{"title":"Pain detection using biometric information acquired by a wristwatch wearable device: a pilot study of spontaneous menstrual pain in healthy females.","authors":"Hideyuki Hirayama, Shiori Yoshida, Konosuke Sasaki, Emi Yuda, Yutaka Yoshida, Mitsunori Miyashita","doi":"10.1186/s13104-025-07098-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Pain is subjective, and self-reporting pain might be challenging. Studies conducted to detect pain using biological signals and real-time self-reports pain are limited. We evaluated the feasibility of collecting pain data on healthy females' menstrual pain and conducted preliminary analysis.</p><p><strong>Results: </strong>Five healthy adult females participated. They wore two wristwatch devices (Silmee and Fitbit) and a Holter ECG (electrocardiogram) during menstruation to record the pain intensity and timing. Subsequently, we analyzed the correlation between heart and pulse rates and assessed pre- and post-pain biometric differences. We collected sixty pain records from five participants. The correlation coefficients between heart rate and pulse rate ranged from 0.79 to 0.95 with Holter ECG vs. Fitbit and 0.32 to 0.74 with Holter ECG vs. Silmee. Analysis revealed significant changes in motion frequency post-pain (p = 0.04). For abdominal pain with a numerical rating scale score of ≥ 4 (n = 13), motion frequency (p < 0.001) and pulse rate (p = 0.02) showed significant differences post-pain compared to baseline values. Healthy females could wear the wristwatch device in daily life and report pain in real time. Wristwatch devices can effectively collect biological data to detect moderate pain by focusing on acceleration and pulse rate.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"31"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07098-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Pain is subjective, and self-reporting pain might be challenging. Studies conducted to detect pain using biological signals and real-time self-reports pain are limited. We evaluated the feasibility of collecting pain data on healthy females' menstrual pain and conducted preliminary analysis.
Results: Five healthy adult females participated. They wore two wristwatch devices (Silmee and Fitbit) and a Holter ECG (electrocardiogram) during menstruation to record the pain intensity and timing. Subsequently, we analyzed the correlation between heart and pulse rates and assessed pre- and post-pain biometric differences. We collected sixty pain records from five participants. The correlation coefficients between heart rate and pulse rate ranged from 0.79 to 0.95 with Holter ECG vs. Fitbit and 0.32 to 0.74 with Holter ECG vs. Silmee. Analysis revealed significant changes in motion frequency post-pain (p = 0.04). For abdominal pain with a numerical rating scale score of ≥ 4 (n = 13), motion frequency (p < 0.001) and pulse rate (p = 0.02) showed significant differences post-pain compared to baseline values. Healthy females could wear the wristwatch device in daily life and report pain in real time. Wristwatch devices can effectively collect biological data to detect moderate pain by focusing on acceleration and pulse rate.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.