KGF impedes TRIM21-enhanced stabilization of keratin 10 mediating differentiation in hypopharyngeal cancer

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-01-21 DOI:10.1016/j.cellsig.2025.111614
Fangyu Chai , Guangyi Wang , Yibang Shen , Yanfang Niu , Yichuan Huang , Tao Fu , Tao Yang , Yan Jiang , Jisheng Zhang
{"title":"KGF impedes TRIM21-enhanced stabilization of keratin 10 mediating differentiation in hypopharyngeal cancer","authors":"Fangyu Chai ,&nbsp;Guangyi Wang ,&nbsp;Yibang Shen ,&nbsp;Yanfang Niu ,&nbsp;Yichuan Huang ,&nbsp;Tao Fu ,&nbsp;Tao Yang ,&nbsp;Yan Jiang ,&nbsp;Jisheng Zhang","doi":"10.1016/j.cellsig.2025.111614","DOIUrl":null,"url":null,"abstract":"<div><div>KGF, also known as FGF7, is a member of the fibroblast growth factor (FGF) family that binds with high affinity to the FGF receptor 2b (FGFR2b) and regulates various cellular processes, including cell proliferation and differentiation in a variety of tumors. However, its potential role in hypopharyngeal cancer (HPC) remains largely unknown. In our study, we observed increased expression of FGFR2b in HPC. KGF treatment inhibited the expression of the differentiation marker keratin 10 (K10) protein at the post-transcriptional level in FaDu cells. Furthermore, treatment with the proteasome inhibitor MG132 was found to attenuate KGF-induced K10 reduction, suggesting the involvement of the ubiquitin-proteasome system. Using mass spectrometry and immunoprecipitation analysis, we identified the E3 ubiquitin ligase TRIM21 as a K10-interacting protein. Unexpectedly, instead of causing degradation, TRIM21 enhanced K10 protein stability through K6-linked ubiquitination of K10 at lysine 163 (K163) in the context of KGF exposure. Meanwhile, KGF treatment decreased TRIM21 protein levels, which were regulated by the p38 MAPK pathway, leading to K48-linked ubiquitination-mediated degradation of TRIM21. Notably, TRIM21 knockdown significantly promoted proliferation, inhibited differentiation and migration of FaDu cells, whereas TRIM21 overexpression had opposite effects in vitro and suppressed xenograft tumor growth in vivo. Our study demonstrates that TRIM21 may act as a tumor suppressor in HPC. However, TRIM21 overexpression decreased the sensitivity of FaDu cells to 5-fluorouracil, whereas TRIM21 knockdown or KGF administration significantly increased 5-fluorouracil sensitivity. Taken together, these findings highlight the intricate balance between protein stabilization and degradation orchestrated by KGF. This ubiquitination-mediated non-degradation mechanism of TRIM21 may provide novel therapeutic strategies for HPC and other cancers.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111614"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000270","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KGF, also known as FGF7, is a member of the fibroblast growth factor (FGF) family that binds with high affinity to the FGF receptor 2b (FGFR2b) and regulates various cellular processes, including cell proliferation and differentiation in a variety of tumors. However, its potential role in hypopharyngeal cancer (HPC) remains largely unknown. In our study, we observed increased expression of FGFR2b in HPC. KGF treatment inhibited the expression of the differentiation marker keratin 10 (K10) protein at the post-transcriptional level in FaDu cells. Furthermore, treatment with the proteasome inhibitor MG132 was found to attenuate KGF-induced K10 reduction, suggesting the involvement of the ubiquitin-proteasome system. Using mass spectrometry and immunoprecipitation analysis, we identified the E3 ubiquitin ligase TRIM21 as a K10-interacting protein. Unexpectedly, instead of causing degradation, TRIM21 enhanced K10 protein stability through K6-linked ubiquitination of K10 at lysine 163 (K163) in the context of KGF exposure. Meanwhile, KGF treatment decreased TRIM21 protein levels, which were regulated by the p38 MAPK pathway, leading to K48-linked ubiquitination-mediated degradation of TRIM21. Notably, TRIM21 knockdown significantly promoted proliferation, inhibited differentiation and migration of FaDu cells, whereas TRIM21 overexpression had opposite effects in vitro and suppressed xenograft tumor growth in vivo. Our study demonstrates that TRIM21 may act as a tumor suppressor in HPC. However, TRIM21 overexpression decreased the sensitivity of FaDu cells to 5-fluorouracil, whereas TRIM21 knockdown or KGF administration significantly increased 5-fluorouracil sensitivity. Taken together, these findings highlight the intricate balance between protein stabilization and degradation orchestrated by KGF. This ubiquitination-mediated non-degradation mechanism of TRIM21 may provide novel therapeutic strategies for HPC and other cancers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
Editorial Board CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA. Curcumin chemo-sensitizes intrinsic apoptosis through ROS-mediated mitochondrial hyperpolarization and DNA damage in breast cancer cells Editorial Board Game-changing breakthroughs to redefine the landscape of the renin–angiotensin–aldosterone system in health and disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1