{"title":"The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker.","authors":"Hamish McLean, Alexey Mikaberidze, Greg Deakin, Xiangming Xu, Matevz Papp-Rupar","doi":"10.1093/femsec/fiaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms