The architecture of theory and data in microbiome design: towards an S-matrix for microbiomes.

IF 5.9 2区 生物学 Q1 MICROBIOLOGY Current opinion in microbiology Pub Date : 2025-01-22 DOI:10.1016/j.mib.2025.102580
Shreya Arya, Ashish B George, James O'Dwyer
{"title":"The architecture of theory and data in microbiome design: towards an S-matrix for microbiomes.","authors":"Shreya Arya, Ashish B George, James O'Dwyer","doi":"10.1016/j.mib.2025.102580","DOIUrl":null,"url":null,"abstract":"<p><p>Designing microbiomes for applications in health, bioengineering, and sustainability is intrinsically linked to a fundamental theoretical understanding of the rules governing microbial community assembly. Microbial ecologists have used a range of mathematical models to understand, predict, and control microbiomes, ranging from mechanistic models, putting microbial populations and their interactions as the focus, to purely statistical approaches, searching for patterns in empirical and experimental data. We review the success and limitations of these modeling approaches when designing novel microbiomes, especially when guided by (inevitably) incomplete experimental data. Although successful at predicting generic patterns of community assembly, mechanistic and phenomenological models tend to fall short of the precision needed to design and implement specific functionality in a microbiome. We argue that to effectively design microbiomes with optimal functions in diverse environments, ecologists should combine data-driven techniques with mechanistic models - a middle, third way for using theory to inform design.</p>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"83 ","pages":"102580"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mib.2025.102580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing microbiomes for applications in health, bioengineering, and sustainability is intrinsically linked to a fundamental theoretical understanding of the rules governing microbial community assembly. Microbial ecologists have used a range of mathematical models to understand, predict, and control microbiomes, ranging from mechanistic models, putting microbial populations and their interactions as the focus, to purely statistical approaches, searching for patterns in empirical and experimental data. We review the success and limitations of these modeling approaches when designing novel microbiomes, especially when guided by (inevitably) incomplete experimental data. Although successful at predicting generic patterns of community assembly, mechanistic and phenomenological models tend to fall short of the precision needed to design and implement specific functionality in a microbiome. We argue that to effectively design microbiomes with optimal functions in diverse environments, ecologists should combine data-driven techniques with mechanistic models - a middle, third way for using theory to inform design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
期刊最新文献
The architecture of theory and data in microbiome design: towards an S-matrix for microbiomes. Dissecting S-itaconation at host-pathogen interactions with chemical proteomics tools. Harnessing gut microbial communities to unravel microbiome functions. A CRISPR view on genetic screens in Toxoplasma gondii. Revisiting the potential of natural products in antimycobacterial therapy: advances in drug discovery and semisynthetic solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1