{"title":"Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach.","authors":"Prathap Srirangan, Evan Prince Sabina","doi":"10.1080/01480545.2025.2455442","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-43"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2025.2455442","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.