Directed Evolution of AAV9 for Efficient Gene Expression in Cardiomyocytes In Vitro and In Vivo.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2025-01-24 DOI:10.1089/hum.2024.126
Leonard Hüttermann, Lena C Schröder, Prithviraj M V Shetty, Timo Jonker, Susanne S Hille, Anca Kliesow Remes, Andrea Matzen, Dirk Grimm, Derk Frank, Gerard J J Boink, Thomas Eschenhagen, Dennis Schade, Oliver J Müller
{"title":"Directed Evolution of AAV9 for Efficient Gene Expression in Cardiomyocytes <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Leonard Hüttermann, Lena C Schröder, Prithviraj M V Shetty, Timo Jonker, Susanne S Hille, Anca Kliesow Remes, Andrea Matzen, Dirk Grimm, Derk Frank, Gerard J J Boink, Thomas Eschenhagen, Dennis Schade, Oliver J Müller","doi":"10.1089/hum.2024.126","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency <i>in vitro</i> and <i>in vivo</i>. For example, AAV9 vectors work well in rodent heart muscle cells <i>in vivo</i> but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for <i>in vitro</i> studies. Therefore, we aimed to develop an AAV that could efficiently express genes in NRVCMs, human engineered heart tissue (hEHT), and mammalian hearts. The production of AAV6 vectors results in lower yields compared with AAV9. Hence, we used random AAV9 peptide libraries and selected variants on NRVCMs at the vector genome and RNA levels in parallel. The enriched library variants were characterized using high-throughput analysis of barcoded variants, followed by individual validation of the most promising candidates. Interestingly, we found striking differences in NRVCM transduction and gene expression patterns of the AAV capsid variants depending on the selection strategy. AAV variants selected based on the vector genome level enabled the highest transduction but were outperformed by AAVs selected on the RNA level in terms of expression efficiency. In addition, we identified a new AAV9 capsid variant that not only allowed significantly higher gene expression in NRVCMs compared with AAV6 but also enabled similar gene expression in murine hearts as AAV9 wild-type vectors after being intravenously injected into mice. Moreover, the novel variant facilitated significantly higher gene expression in hEHT compared with AAV9. Therefore, this AAV variant could streamline preclinical gene therapy studies of myocardial diseases by eliminating the need for using different AAVs for NRVCMs, hEHT, and mice.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency in vitro and in vivo. For example, AAV9 vectors work well in rodent heart muscle cells in vivo but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for in vitro studies. Therefore, we aimed to develop an AAV that could efficiently express genes in NRVCMs, human engineered heart tissue (hEHT), and mammalian hearts. The production of AAV6 vectors results in lower yields compared with AAV9. Hence, we used random AAV9 peptide libraries and selected variants on NRVCMs at the vector genome and RNA levels in parallel. The enriched library variants were characterized using high-throughput analysis of barcoded variants, followed by individual validation of the most promising candidates. Interestingly, we found striking differences in NRVCM transduction and gene expression patterns of the AAV capsid variants depending on the selection strategy. AAV variants selected based on the vector genome level enabled the highest transduction but were outperformed by AAVs selected on the RNA level in terms of expression efficiency. In addition, we identified a new AAV9 capsid variant that not only allowed significantly higher gene expression in NRVCMs compared with AAV6 but also enabled similar gene expression in murine hearts as AAV9 wild-type vectors after being intravenously injected into mice. Moreover, the novel variant facilitated significantly higher gene expression in hEHT compared with AAV9. Therefore, this AAV variant could streamline preclinical gene therapy studies of myocardial diseases by eliminating the need for using different AAVs for NRVCMs, hEHT, and mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Directed Evolution of AAV9 for Efficient Gene Expression in Cardiomyocytes In Vitro and In Vivo. Thrombotic Microangiopathy Associated with Systemic Adeno-Associated Virus Gene Transfer: Review of Reported Cases. Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation. The 2024 Nobel Prize: Impact of the Discovery of miRNA on the Field of Gene Therapy. Intracisternal AAV9-MAG-hABCD1 Vector Reverses Motor Deficits in Adult Adrenomyeloneuropathy Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1