Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms.

IF 2.8 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Frontiers in Cardiovascular Medicine Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/fcvm.2024.1504957
Yicheng Wang, Chuan-Yang Wu, Hui-Xian Fu, Jian-Cheng Zhang
{"title":"Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms.","authors":"Yicheng Wang, Chuan-Yang Wu, Hui-Xian Fu, Jian-Cheng Zhang","doi":"10.3389/fcvm.2024.1504957","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Depression is being increasingly acknowledged as an important risk factor contributing to coronary heart disease (CHD). Currently, there is no predictive model specifically designed to evaluate the risk of coronary heart disease among individuals with depression. We aim to develop a machine learning (ML) model that will analyze risk factors and forecast the probability of coronary heart disease in individuals suffering from depression.</p><p><strong>Methods: </strong>This research employed data from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018, which included 2,085 individuals who had previously been diagnosed with depression. The population was randomly divided into a training set and a validation set, with an 8:2 ratio. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors for coronary heart disease in individuals with depression. Eight machine learning algorithms were applied to the training set to construct the model, including logistic regression (LR), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), extreme gradient boosting (XGBoost), classification and regression tree (CART), k-nearest neighbors (KNN), and neural network (NNET). The validation set are used to evaluate the various performances of eight machine learning models. Several evaluation metrics were employed to assess and compare the performance of eight different machine learning models, aiming to identify the most effective algorithm for predicting coronary heart disease risk in individuals with depression. The evaluation metrics applied in this study included the area under the receiver operating characteristic (ROC) curve, calibration curve, Brier scores, decision curve analysis (DCA), and the precision-recall (PR) curve. And internally validated by the bootstrap method.</p><p><strong>Results: </strong>Univariate and multivariate logistic regression analyses identified age, chest pain status, history of myocardial infarction, serum triglyceride levels, and education level as independent predictors of coronary heart disease risk. Eight machine learning algorithms are applied to construct the models, among which the Random Forest model has the best performance, with an (Area Under Curve) AUC of 0.987 for the random forest model in the training set, and an AUC of 0.848 for the PR curve. In the validation set, the random forest model achieves an AUC of 0.996, and an AUC of 0.960 for the PR curve, which demonstrates an excellent discriminative ability. Calibration curves indicated high congruence between observed and predicted odds, with minimal Brier scores of 0.026 and 0.021 for the training, respectively, reinforcing the model's ability to discriminate. Set and validation set, respectively, reinforcing the model's predictive accuracy. DCA curves confirmed net benefits of the random forest model across. Furthermore, the AUC of the random forest model was 0.928 after internal validation by bootstrap method, indicating that its discriminative ability is good, and the model is useful for clinical assessment of the risk of coronary heart disease in depressed people.</p><p><strong>Conclusion: </strong>The random forest algorithm exhibited the best predictive performance, potentially aiding clinicians in assessing the risk probabilities of coronary heart disease within this population.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"11 ","pages":"1504957"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2024.1504957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Depression is being increasingly acknowledged as an important risk factor contributing to coronary heart disease (CHD). Currently, there is no predictive model specifically designed to evaluate the risk of coronary heart disease among individuals with depression. We aim to develop a machine learning (ML) model that will analyze risk factors and forecast the probability of coronary heart disease in individuals suffering from depression.

Methods: This research employed data from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018, which included 2,085 individuals who had previously been diagnosed with depression. The population was randomly divided into a training set and a validation set, with an 8:2 ratio. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors for coronary heart disease in individuals with depression. Eight machine learning algorithms were applied to the training set to construct the model, including logistic regression (LR), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), extreme gradient boosting (XGBoost), classification and regression tree (CART), k-nearest neighbors (KNN), and neural network (NNET). The validation set are used to evaluate the various performances of eight machine learning models. Several evaluation metrics were employed to assess and compare the performance of eight different machine learning models, aiming to identify the most effective algorithm for predicting coronary heart disease risk in individuals with depression. The evaluation metrics applied in this study included the area under the receiver operating characteristic (ROC) curve, calibration curve, Brier scores, decision curve analysis (DCA), and the precision-recall (PR) curve. And internally validated by the bootstrap method.

Results: Univariate and multivariate logistic regression analyses identified age, chest pain status, history of myocardial infarction, serum triglyceride levels, and education level as independent predictors of coronary heart disease risk. Eight machine learning algorithms are applied to construct the models, among which the Random Forest model has the best performance, with an (Area Under Curve) AUC of 0.987 for the random forest model in the training set, and an AUC of 0.848 for the PR curve. In the validation set, the random forest model achieves an AUC of 0.996, and an AUC of 0.960 for the PR curve, which demonstrates an excellent discriminative ability. Calibration curves indicated high congruence between observed and predicted odds, with minimal Brier scores of 0.026 and 0.021 for the training, respectively, reinforcing the model's ability to discriminate. Set and validation set, respectively, reinforcing the model's predictive accuracy. DCA curves confirmed net benefits of the random forest model across. Furthermore, the AUC of the random forest model was 0.928 after internal validation by bootstrap method, indicating that its discriminative ability is good, and the model is useful for clinical assessment of the risk of coronary heart disease in depressed people.

Conclusion: The random forest algorithm exhibited the best predictive performance, potentially aiding clinicians in assessing the risk probabilities of coronary heart disease within this population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Cardiovascular Medicine
Frontiers in Cardiovascular Medicine Medicine-Cardiology and Cardiovascular Medicine
CiteScore
3.80
自引率
11.10%
发文量
3529
审稿时长
14 weeks
期刊介绍: Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers? At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.
期刊最新文献
Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms. The interplay between sex, lifestyle factors and built environment on 20-year cardiovascular disease incidence; the ATTICA study (2002-2022). Enhanced recovery in type A aortic dissection evaluating the efficacy and feasibility of early myocardial reperfusion. Evolution of de Winter syndrome to Wellens syndrome: a case report and literature review. Exposure to specific polyfluoroalkyl chemicals is associated with cardiovascular disease in US adults: a population-based study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1