Gut microbiota derived metabolite trimethylamine N-oxide influences prostate cancer progression via the p38/HMOX1 pathway.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Frontiers in Pharmacology Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/fphar.2024.1526051
Yuhua Zhou, Jing Lv, Shengkai Jin, Chaowei Fu, Bo Liu, Yang Shen, Menglu Li, Yuwei Zhang, Ninghan Feng
{"title":"Gut microbiota derived metabolite trimethylamine N-oxide influences prostate cancer progression via the p38/HMOX1 pathway.","authors":"Yuhua Zhou, Jing Lv, Shengkai Jin, Chaowei Fu, Bo Liu, Yang Shen, Menglu Li, Yuwei Zhang, Ninghan Feng","doi":"10.3389/fphar.2024.1526051","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response. A high-choline diet increases the risk of fatal prostate cancer, potentially mediated by the conversion of choline to the trimethylamine N-oxide (TMAO) by the gut microbiota.</p><p><strong>Methods: </strong>The CCK8 assay was employed to investigate whether TMAO affects the proliferation ability of prostate cancer cells and to determine the appropriate drug concentration. Subsequently, CCK8 time gradients, colony formation assays, and EdU assays measured TMAO's influence on cell proliferation. Wound healing and transwell migration assays evaluated TMAO's effect on cell migration. RNA-seq analysis was performed to explore the mechanisms by which TMAO influences the proliferation and migration of prostate cancer cells. qPCR and Western blotting were utilized to validate the expression of related mRNA or proteins. Finally, we performed <i>in vivo</i> experiments to evaluate the effect of a high choline diet on the growth of subcutaneous tumors and lung metastases in mice.</p><p><strong>Results: </strong>Our study found that TMAO enhances the proliferation and migration of prostate cancer cells by upregulating HMOX1 via activation of the MAPK signaling pathway, specifically p38 MAPK. In mouse subcutaneous tumor and lung metastatic tumor experiments, the high-choline diet increased prostate cancer cell proliferation and migration, resulting in significantly greater tumor volume and number of metastases than controls.</p><p><strong>Conclusion: </strong>This study is the first to demonstrate the role of the gut microbiota-derived metabolite TMAO in prostate cancer. TMAO promotes the proliferation and migration of prostate cancer cells by activating the p38 pathway and increasing HMOX1 expression. Reducing choline intake through dietary intervention may delay the onset and progression of prostate cancer, presenting significant clinical application value.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"15 ","pages":"1526051"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2024.1526051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response. A high-choline diet increases the risk of fatal prostate cancer, potentially mediated by the conversion of choline to the trimethylamine N-oxide (TMAO) by the gut microbiota.

Methods: The CCK8 assay was employed to investigate whether TMAO affects the proliferation ability of prostate cancer cells and to determine the appropriate drug concentration. Subsequently, CCK8 time gradients, colony formation assays, and EdU assays measured TMAO's influence on cell proliferation. Wound healing and transwell migration assays evaluated TMAO's effect on cell migration. RNA-seq analysis was performed to explore the mechanisms by which TMAO influences the proliferation and migration of prostate cancer cells. qPCR and Western blotting were utilized to validate the expression of related mRNA or proteins. Finally, we performed in vivo experiments to evaluate the effect of a high choline diet on the growth of subcutaneous tumors and lung metastases in mice.

Results: Our study found that TMAO enhances the proliferation and migration of prostate cancer cells by upregulating HMOX1 via activation of the MAPK signaling pathway, specifically p38 MAPK. In mouse subcutaneous tumor and lung metastatic tumor experiments, the high-choline diet increased prostate cancer cell proliferation and migration, resulting in significantly greater tumor volume and number of metastases than controls.

Conclusion: This study is the first to demonstrate the role of the gut microbiota-derived metabolite TMAO in prostate cancer. TMAO promotes the proliferation and migration of prostate cancer cells by activating the p38 pathway and increasing HMOX1 expression. Reducing choline intake through dietary intervention may delay the onset and progression of prostate cancer, presenting significant clinical application value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Multi-omics approaches to deciphering complex pathological mechanisms of migraine: a systematic review. Polydatin enhances oxaliplatin-induced cell death by activating NOX5-ROS-mediated DNA damage and ER stress in colon cancer cells. Population pharmacokinetics and dosing optimization of imipenem in Chinese elderly patients. Protective effects of Cordyceps militaris against hepatocyte apoptosis and liver fibrosis induced by high palmitic acid diet. Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1