Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2025-01-24 DOI:10.1093/hmg/ddae183
Franziska Langhammer, Anne Gregor, Niels R Ntamati, Arif B Ekici, Beate Winner, Thomas Nevian, Christiane Zweier
{"title":"Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.","authors":"Franziska Langhammer, Anne Gregor, Niels R Ntamati, Arif B Ekici, Beate Winner, Thomas Nevian, Christiane Zweier","doi":"10.1093/hmg/ddae183","DOIUrl":null,"url":null,"abstract":"<p><p>While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
A novel frameshift mutation of SOX10 identified in Waardenburg syndrome type 2. Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy. Alternative polyadenylation shapes the molecular and clinical features of lung adenocarcinoma. Characterisation of LGP2 complex multitranscript system in humans: role in the innate immune response and evolution from non-human primates. SMN depletion impairs skeletal muscle formation and maturation in a mouse model of SMA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1