Peptide mapping analysis of synthetic semaglutide and liraglutide for generic development of drugs originating from recombinant DNA technology.

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL Journal of pharmaceutical and biomedical analysis Pub Date : 2025-01-17 DOI:10.1016/j.jpba.2025.116682
Soo Hyun Kim, Sung Soo Kim, Hyun Jun Kim, Eun Ji Park, Dong Hee Na
{"title":"Peptide mapping analysis of synthetic semaglutide and liraglutide for generic development of drugs originating from recombinant DNA technology.","authors":"Soo Hyun Kim, Sung Soo Kim, Hyun Jun Kim, Eun Ji Park, Dong Hee Na","doi":"10.1016/j.jpba.2025.116682","DOIUrl":null,"url":null,"abstract":"<p><p>Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs. Therefore, this study aimed to develop a peptide mapping method to describe the primary structure of semaglutide and liraglutide using ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS), and to apply this method to demonstrate the sameness between synthetic peptides for generic drugs and rDNA peptides of the original drugs. Masses of the peptide fragments were identified using HRMS at an accurate level of mass error below 10 ppm, and their sequences were determined via MS<sup>E</sup> sequencing using in-source fragmentation, which was also useful for identifying the fatty acid chain modification site. Full sequence coverage of each semaglutide and liraglutide was accomplished by combining peptide maps generated using Glu-C and chymotrypsin. The proposed peptide mapping method using UPLC-HRMS was useful for determining active ingredient sameness between generic synthetic peptides and previously approved peptide drug products of rDNA origin.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"256 ","pages":"116682"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2025.116682","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs. Therefore, this study aimed to develop a peptide mapping method to describe the primary structure of semaglutide and liraglutide using ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS), and to apply this method to demonstrate the sameness between synthetic peptides for generic drugs and rDNA peptides of the original drugs. Masses of the peptide fragments were identified using HRMS at an accurate level of mass error below 10 ppm, and their sequences were determined via MSE sequencing using in-source fragmentation, which was also useful for identifying the fatty acid chain modification site. Full sequence coverage of each semaglutide and liraglutide was accomplished by combining peptide maps generated using Glu-C and chymotrypsin. The proposed peptide mapping method using UPLC-HRMS was useful for determining active ingredient sameness between generic synthetic peptides and previously approved peptide drug products of rDNA origin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
期刊最新文献
Identification and pharmacological properties of 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Three sample preparation methods for clinical determination of CDK4/6 inhibitors with endocrine therapy in breast cancer patient plasma using LC-MS: Cross-validation (red), ecological (green) and economical (blue) assessment. Application of a dual channel MPTS-modified two-dimensional cell membrane chromatography system for rapid screening of effective ingredients in Saposhnikovia divaricata targeting inflammatory macrophages and fibroblast synovial cells in the treatment of rheumatoid arthritis. Application of bifunctional monomer surface MIP with MOFs nanocomposite for efficient trapping and analysis of luteolin in compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid. Development of an LC-MS/MS method for the simultaneous quantification of 11 perfluoroalkyl compounds in mouse plasma for toxicokinetic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1