When two signals cross paths: cGAS-STING and ER stress in kidney disease progression

IF 14.8 1区 医学 Q1 UROLOGY & NEPHROLOGY Kidney international Pub Date : 2025-02-01 DOI:10.1016/j.kint.2024.11.023
Ryo Yamada , Motoko Yanagita
{"title":"When two signals cross paths: cGAS-STING and ER stress in kidney disease progression","authors":"Ryo Yamada ,&nbsp;Motoko Yanagita","doi":"10.1016/j.kint.2024.11.023","DOIUrl":null,"url":null,"abstract":"<div><div>Previous reports have suggested that both the endoplasmic reticulum (ER) stress and cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathways contribute to the progression of chronic kidney disease; however, the relationship between these 2 pathways in kidney injury has not been fully elucidated. Andrade-Silva <em>et al.</em> revealed that the cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathway can enhance ER stress through the protein kinase R-like ER kinase (PERK)–mediated signaling cascade in kidney tubular epithelial cells and sequentially augment fibrosis during kidney injury. Further studies are needed to elucidate the precise mechanisms by which the cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathway activates PERK-dependent ER stress in kidney tubular epithelial cells post injury.</div></div>","PeriodicalId":17801,"journal":{"name":"Kidney international","volume":"107 2","pages":"Pages 227-229"},"PeriodicalIF":14.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S008525382400855X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous reports have suggested that both the endoplasmic reticulum (ER) stress and cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathways contribute to the progression of chronic kidney disease; however, the relationship between these 2 pathways in kidney injury has not been fully elucidated. Andrade-Silva et al. revealed that the cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathway can enhance ER stress through the protein kinase R-like ER kinase (PERK)–mediated signaling cascade in kidney tubular epithelial cells and sequentially augment fibrosis during kidney injury. Further studies are needed to elucidate the precise mechanisms by which the cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes pathway activates PERK-dependent ER stress in kidney tubular epithelial cells post injury.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Kidney international
Kidney international 医学-泌尿学与肾脏学
CiteScore
23.30
自引率
3.10%
发文量
490
审稿时长
3-6 weeks
期刊介绍: Kidney International (KI), the official journal of the International Society of Nephrology, is led by Dr. Pierre Ronco (Paris, France) and stands as one of nephrology's most cited and esteemed publications worldwide. KI provides exceptional benefits for both readers and authors, featuring highly cited original articles, focused reviews, cutting-edge imaging techniques, and lively discussions on controversial topics. The journal is dedicated to kidney research, serving researchers, clinical investigators, and practicing nephrologists.
期刊最新文献
Editorial Board Table of Contents in this issue "Star chain pattern" of focal emphysematous pyelonephritis in polycystic kidney disease Hepatic venous outflow obstruction in autosomal dominant polycystic kidney disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1