Larissa Alexsandra da Silva Neto Trajano, Priscyanne Barreto Siqueira, Daphne Pinheiro, Thayssa Gomes Farias, Márcia Soares Dos Santos, Bruno Ricardo Barreto Pires, Adenilson de Souza da Fonseca, Andre Luiz Mencalha
{"title":"Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.","authors":"Larissa Alexsandra da Silva Neto Trajano, Priscyanne Barreto Siqueira, Daphne Pinheiro, Thayssa Gomes Farias, Márcia Soares Dos Santos, Bruno Ricardo Barreto Pires, Adenilson de Souza da Fonseca, Andre Luiz Mencalha","doi":"10.1007/s10103-025-04287-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA). No significant difference was observed in the mtDNA/gDNA ratio comparing the low-power infrared laser (LPIL) and LED-irradiated groups to their control counterparts. Similarly, no difference was observed in the mRNA levels of PINK1 and PGC-1α of the irradiated group with an LPIL and LED alone or in combination. In conclusion, PBM with LPIL and LED did not alter the mtDNA/gDNA ratio nor modulate the mRNA levels of the genes related to mitophagy and biogenesis in BC cells.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"40 1","pages":"38"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-025-04287-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA). No significant difference was observed in the mtDNA/gDNA ratio comparing the low-power infrared laser (LPIL) and LED-irradiated groups to their control counterparts. Similarly, no difference was observed in the mRNA levels of PINK1 and PGC-1α of the irradiated group with an LPIL and LED alone or in combination. In conclusion, PBM with LPIL and LED did not alter the mtDNA/gDNA ratio nor modulate the mRNA levels of the genes related to mitophagy and biogenesis in BC cells.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.