Wenbei Ma , Chunling Huang , Wanyi Fang , Shanshan Liu , Yingli Li , Yanyan Zhong , Daming Zuo , Xiaohe Lu
{"title":"Mucin1 N-domain variant contributes to dry eye syndrome in diabetes by increasing immature mucus secretory granules","authors":"Wenbei Ma , Chunling Huang , Wanyi Fang , Shanshan Liu , Yingli Li , Yanyan Zhong , Daming Zuo , Xiaohe Lu","doi":"10.1016/j.lfs.2025.123412","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diabetes-associated dry eye syndrome (DMDES) affects 20–54 % of diabetes, leading to ocular irritation and blurry vision. Decreased conjunctival goblet cell mucus secretion is one of the major pathological processes of DMDES. This study aims to investigate the mechanism of mucus granule maturation and secretion disturbance in DMDES.</div></div><div><h3>Methods</h3><div>Tear samples from diabetic patients with and without dry eye syndrome were analyzed by mass spectrometry to identify proteins associated with ocular mucous layer reduction. The N-terminal domain fragment of Mucin1 (MUC1-ND) was transfected into the mouse conjunctiva to investigate alterations in goblet cell mucus secretion. Protein localization and granule morphology were explored through transmission electron microscopy with colloidal gold labeling and immunohistochemistry. Immunofluorescence, co-immunoprecipitation, and integrative computational modeling of protein interactions were employed to explore protein-protein interactions.</div></div><div><h3>Results</h3><div>Tear proteomic analysis revealed significantly elevated MUC1-ND levels in tears from DMDES patients, which correlated with reduced goblet cell mucus secretion and tear film instability. Upregulation of MUC1-ND in mice conjunctiva inhibited the maturation of secretory mucus granules, contributing to tear mucous layer reduction. Protein docking and co-immunoprecipitation analysis demonstrated that the binding of MUC1-ND and Syntaxin6 prevents granule fusion and maintains the immature state of secretory granules, which leads to reduced mucus secretion.</div></div><div><h3>Conclusion</h3><div>In DMDES, MUC1-ND binds with Syntaxin6 to disrupt the fusion and maturation of secretory mucus granules in conjunctival goblet cells, which provides a new insight into DMDES pathophysiology.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"363 ","pages":"Article 123412"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525000451","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Diabetes-associated dry eye syndrome (DMDES) affects 20–54 % of diabetes, leading to ocular irritation and blurry vision. Decreased conjunctival goblet cell mucus secretion is one of the major pathological processes of DMDES. This study aims to investigate the mechanism of mucus granule maturation and secretion disturbance in DMDES.
Methods
Tear samples from diabetic patients with and without dry eye syndrome were analyzed by mass spectrometry to identify proteins associated with ocular mucous layer reduction. The N-terminal domain fragment of Mucin1 (MUC1-ND) was transfected into the mouse conjunctiva to investigate alterations in goblet cell mucus secretion. Protein localization and granule morphology were explored through transmission electron microscopy with colloidal gold labeling and immunohistochemistry. Immunofluorescence, co-immunoprecipitation, and integrative computational modeling of protein interactions were employed to explore protein-protein interactions.
Results
Tear proteomic analysis revealed significantly elevated MUC1-ND levels in tears from DMDES patients, which correlated with reduced goblet cell mucus secretion and tear film instability. Upregulation of MUC1-ND in mice conjunctiva inhibited the maturation of secretory mucus granules, contributing to tear mucous layer reduction. Protein docking and co-immunoprecipitation analysis demonstrated that the binding of MUC1-ND and Syntaxin6 prevents granule fusion and maintains the immature state of secretory granules, which leads to reduced mucus secretion.
Conclusion
In DMDES, MUC1-ND binds with Syntaxin6 to disrupt the fusion and maturation of secretory mucus granules in conjunctival goblet cells, which provides a new insight into DMDES pathophysiology.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.