Johannes Greil, Martina Kiechle, Adam Papp, Peter Neumann, Zoltán Kovács, Janos Volk, Frank Schulz, Sebastian Wintz, Markus Weigand, György Csaba, Markus Becherer
{"title":"The effect of Ga-ion irradiation on sub-micron-wavelength spin waves in yttrium-iron-garnet films.","authors":"Johannes Greil, Martina Kiechle, Adam Papp, Peter Neumann, Zoltán Kovács, Janos Volk, Frank Schulz, Sebastian Wintz, Markus Weigand, György Csaba, Markus Becherer","doi":"10.1088/1361-6528/adad7d","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in yttrium-iron-garnet films. Time-resolved scanning transmission x-ray microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Ga<sup>+</sup>irradiation can be understood by assuming a few percent change in the effective magnetizationMeffof the film due to a trade-off between changes in anisotropy and effective film thickness. Our results demonstrate that FIB irradiation can be used to locally alter the dispersion relation and the effective refractive indexneffof the film, even for submicron wavelengths. To achieve the same change innefffor shorter wavelengths, a higher dose is required, but no significant deterioration of spin wave propagation length in the irradiated regions was observed, even at the highest applied doses.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adad7d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in yttrium-iron-garnet films. Time-resolved scanning transmission x-ray microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Ga+irradiation can be understood by assuming a few percent change in the effective magnetizationMeffof the film due to a trade-off between changes in anisotropy and effective film thickness. Our results demonstrate that FIB irradiation can be used to locally alter the dispersion relation and the effective refractive indexneffof the film, even for submicron wavelengths. To achieve the same change innefffor shorter wavelengths, a higher dose is required, but no significant deterioration of spin wave propagation length in the irradiated regions was observed, even at the highest applied doses.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.