Targeted correction of megabase-scale CNTN6 duplication in induced pluripotent stem cells and impacts on gene expression.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES PeerJ Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.7717/peerj.18567
Maria Gridina, Polina Orlova, Oleg Serov
{"title":"Targeted correction of megabase-scale <i>CNTN6</i> duplication in induced pluripotent stem cells and impacts on gene expression.","authors":"Maria Gridina, Polina Orlova, Oleg Serov","doi":"10.7717/peerj.18567","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variations of the human <i>CNTN6</i> gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human <i>CNTN6</i> gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family. Previously, we obtained a set of induced pluripotent stem cell lines derived from a patient with a <i>CNTN6</i> gene duplication and from two healthy donors. Our findings demonstrated that <i>CNTN6</i> expression in neurons carrying the duplication was significantly reduced. Additionally, the expression from the <i>CNTN6</i> duplicated allele was markedly lower compared to the wild-type allele. Here, we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on <i>CNTN6</i> gene expression. We showed that the deletion of one copy of the <i>CNTN6</i> duplication did not affect the expression levels of the remaining allele in the neuronal cells.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18567"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18567","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Copy number variations of the human CNTN6 gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human CNTN6 gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family. Previously, we obtained a set of induced pluripotent stem cell lines derived from a patient with a CNTN6 gene duplication and from two healthy donors. Our findings demonstrated that CNTN6 expression in neurons carrying the duplication was significantly reduced. Additionally, the expression from the CNTN6 duplicated allele was markedly lower compared to the wild-type allele. Here, we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on CNTN6 gene expression. We showed that the deletion of one copy of the CNTN6 duplication did not affect the expression levels of the remaining allele in the neuronal cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
期刊最新文献
Assessing the quality of life among African medical and health science students using the WHOQOL-BREF tool. Berberine-induced browning and energy metabolism: mechanisms and implications. Effect of intercropping Lolium perenne in Ziziphus jujuba orchards on soil quality in the canopy. New record of Frilled shark Chlamydoselachus anguineus Garman, 1884 (Chondrichthyes: Hexanchiformes) in the South Pacific Ocean. Sex differences in anaerobic performance in CrossFit® athletes: a comparison of three different all-out tests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1