Zimeng Wang , Hao Li , Juan Li , Yachun Yang , Zuntao Xu , Jianbo Yang , Pengcheng Wei , Hui Ma
{"title":"Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice","authors":"Zimeng Wang , Hao Li , Juan Li , Yachun Yang , Zuntao Xu , Jianbo Yang , Pengcheng Wei , Hui Ma","doi":"10.1016/j.plantsci.2025.112396","DOIUrl":null,"url":null,"abstract":"<div><div>Rice (<em>Oryza sativa</em> L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice. To explore the endogenous stress-resistant genes and apply them to the breeding of new stress-resistant varieties is an effective way to improve the stress tolerance and adaptability of rice. PHD-finger transcription factor is a kind of zinc-finger structural protein that exists widely in eukaryotes. Its function is mainly focused on gene transcription and regulation of chromatin state, but there are few reports about its involvement in stress response. In the present study, a total of 58 PHD-finger transcription factors were identified, and two genes <em>OsPHD13</em> and <em>OsPHD52</em> were significantly up-regulated under low temperature stress. After low temperature induction, <em>GUS</em> driven by <em>OsPHD13</em> and <em>OsPHD52</em> promoters had different expression activities in roots, stems and leaves of transgenic plants. Further functional analysis of the <em>pOsPHD13</em> and <em>pOsPHD52</em> showed that each of them had a cis-acting element of CRT/DRE in response to low temperature stress. Both in yeast one-hybrid assays and in in vitro gel-shift analysis, CBF protein could specifically bind to the CRT/DRE element in the promoter.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112396"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000135","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice. To explore the endogenous stress-resistant genes and apply them to the breeding of new stress-resistant varieties is an effective way to improve the stress tolerance and adaptability of rice. PHD-finger transcription factor is a kind of zinc-finger structural protein that exists widely in eukaryotes. Its function is mainly focused on gene transcription and regulation of chromatin state, but there are few reports about its involvement in stress response. In the present study, a total of 58 PHD-finger transcription factors were identified, and two genes OsPHD13 and OsPHD52 were significantly up-regulated under low temperature stress. After low temperature induction, GUS driven by OsPHD13 and OsPHD52 promoters had different expression activities in roots, stems and leaves of transgenic plants. Further functional analysis of the pOsPHD13 and pOsPHD52 showed that each of them had a cis-acting element of CRT/DRE in response to low temperature stress. Both in yeast one-hybrid assays and in in vitro gel-shift analysis, CBF protein could specifically bind to the CRT/DRE element in the promoter.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.