{"title":"Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation.","authors":"Shaochun Zhang, Zhijie Xing, Jing Ke","doi":"10.1016/j.jbo.2024.100655","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.</p><p><strong>Methods: </strong>Osteosarcoma stem cells were isolated and induced for DOX resistance. <i>In vitro</i> and <i>in vivo</i> models were employed to assess β-elemene's impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene.</p><p><strong>Results: </strong><i>In vivo</i> animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. <i>In vitro</i> experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, <i>in vivo</i> animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis.</p><p><strong>Conclusion: </strong>β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.</p>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"50 ","pages":"100655"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbo.2024.100655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.
Methods: Osteosarcoma stem cells were isolated and induced for DOX resistance. In vitro and in vivo models were employed to assess β-elemene's impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene.
Results: In vivo animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. In vitro experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, in vivo animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis.
Conclusion: β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.