Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks.

American journal of neurodegenerative disease Pub Date : 2024-12-25 eCollection Date: 2024-01-01 DOI:10.62347/FIQW7087
Seyed-Ali Sadegh-Zadeh, Pooya Hazegh
{"title":"Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks.","authors":"Seyed-Ali Sadegh-Zadeh, Pooya Hazegh","doi":"10.62347/FIQW7087","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.</p><p><strong>Methods: </strong>We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed.</p><p><strong>Results: </strong>The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification.</p><p><strong>Conclusions: </strong>Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"13 5","pages":"49-69"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/FIQW7087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.

Methods: We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed.

Results: The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification.

Conclusions: Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks. Neural reshaping: the plasticity of human brain and artificial intelligence in the learning process. Comparative analysis of dimensionality reduction techniques for EEG-based emotional state classification. Exceptionally giant neglected sacral chordoma in a post-poliotic residual paralysis patient - a rare case scenario. Evaluation of willingness to obtain of Covid 19 vaccine in patients with multiple sclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1