Revisiting the exclusion principle in epidemiology at the limit of a large competitive advantage

IF 1.9 4区 数学 Q2 BIOLOGY Journal of Theoretical Biology Pub Date : 2025-01-21 DOI:10.1016/j.jtbi.2025.112045
Nir Gavish
{"title":"Revisiting the exclusion principle in epidemiology at the limit of a large competitive advantage","authors":"Nir Gavish","doi":"10.1016/j.jtbi.2025.112045","DOIUrl":null,"url":null,"abstract":"<div><div>The competitive exclusion principle in epidemiology implies that when competing strains of a pathogen provide complete protection for each other, the strain with the largest reproduction number outcompetes the other strains and drives them to extinction. The introduction of various trade-off mechanisms may facilitate the coexistence of competing strains, especially when their respective basic reproduction numbers are close so that the competition between the strains is weak. Yet, one may expect that a substantial competitive advantage of one of the strains will eventually outbalance trade-off mechanisms driving less competitive strains to extinction. The literature, however, lacks a rigorous validation of this statement.</div><div>In this work, we challenge the validity of the exclusion principle at a limit in which one strain has a vast competitive advantage over the other strains. We show that when one strain is significantly more transmissible than the others, and under broad conditions, an epidemic system with two strains has a stable endemic equilibrium in which both strains coexist with comparable prevalence. Thus, the competitive exclusion principle does not unconditionally hold beyond the established case of complete immunity.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"600 ","pages":"Article 112045"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519325000116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The competitive exclusion principle in epidemiology implies that when competing strains of a pathogen provide complete protection for each other, the strain with the largest reproduction number outcompetes the other strains and drives them to extinction. The introduction of various trade-off mechanisms may facilitate the coexistence of competing strains, especially when their respective basic reproduction numbers are close so that the competition between the strains is weak. Yet, one may expect that a substantial competitive advantage of one of the strains will eventually outbalance trade-off mechanisms driving less competitive strains to extinction. The literature, however, lacks a rigorous validation of this statement.
In this work, we challenge the validity of the exclusion principle at a limit in which one strain has a vast competitive advantage over the other strains. We show that when one strain is significantly more transmissible than the others, and under broad conditions, an epidemic system with two strains has a stable endemic equilibrium in which both strains coexist with comparable prevalence. Thus, the competitive exclusion principle does not unconditionally hold beyond the established case of complete immunity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
期刊最新文献
Editorial Board Impact of evolutionary relatedness on species diversification and tree shape Editorial Board A mathematical model of microglia glucose metabolism and lactylation with positive feedback. Tradeoffs in the energetic value of neuromodulation in a closed-loop neuromechanical system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1