Advanced Distance-Resolved Evaluation of the Perienhancing Tumor Areas with FLAIR Hyperintensity Indicates Different ADC Profiles by MGMT Promoter Methylation Status in Glioblastoma.

Gergely Bertalan, Nicolin Hainc, Fabian Dominik Von Dehn, Tibor Hortobágyi, Andrea Bink, Emilie Le Rhun, Michael Weller, Zsolt Kulcsar
{"title":"Advanced Distance-Resolved Evaluation of the Perienhancing Tumor Areas with FLAIR Hyperintensity Indicates Different ADC Profiles by <i>MGMT</i> Promoter Methylation Status in Glioblastoma.","authors":"Gergely Bertalan, Nicolin Hainc, Fabian Dominik Von Dehn, Tibor Hortobágyi, Andrea Bink, Emilie Le Rhun, Michael Weller, Zsolt Kulcsar","doi":"10.3174/ajnr.A8493","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Whether differences in the O<sup>6</sup>-methylguanine-DNA methyltransferase (<i>MGMT</i>) promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding <i>MGMT</i> status by using a novel distance-resolved 3D evaluation.</p><p><strong>Materials and methods: </strong>One hundred one patients with <i>IDH</i> wild-type GBM were retrospectively analyzed. GBM was segmented in 3D with deep learning. Tissue with FLAIR hyperintensity around the contrast-enhanced tumor was divided into concentric distance-resolved subvolumes. Mean ADC was calculated for the 3D tumor core and for the distance-resolved volumes around the core. Differences in group mean ADC between patients with <i>MGMT</i> promoter methylated (mMGMT, <i>n</i> = 43) and <i>MGMT</i> promoter unmethylated (uMGMT, <i>n</i> = 58) GBM was analyzed with Wilcoxon signed rank test.</p><p><strong>Results: </strong>For both mMGMT and uMGMT GBM, mean ADC values around the tumor core significantly increased as a function of distance from the core toward the periphery of the perienhancing FLAIR hyperintensity (approximately 10% increase within 5 voxels with <i>P</i> < 001). While group mean ADC in the tumor core was not significantly different, the distance-resolved ADC profile around the core was approximately 10% higher in mMGMT than in uMGMT GBM (<i>P</i> < 10<sup>-8</sup> at 5 voxel distance from the tumor core).</p><p><strong>Conclusions: </strong>Distance-resolved volumetric ADC analysis around the tumor core reveals tissue signatures of GBM imperceptible to the human eye on conventional MRI. The different ADC profiles around the core suggest epigenetically influenced differences in perienhancing tissue characteristics between mMGMT and uMGMT GBM.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Whether differences in the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding MGMT status by using a novel distance-resolved 3D evaluation.

Materials and methods: One hundred one patients with IDH wild-type GBM were retrospectively analyzed. GBM was segmented in 3D with deep learning. Tissue with FLAIR hyperintensity around the contrast-enhanced tumor was divided into concentric distance-resolved subvolumes. Mean ADC was calculated for the 3D tumor core and for the distance-resolved volumes around the core. Differences in group mean ADC between patients with MGMT promoter methylated (mMGMT, n = 43) and MGMT promoter unmethylated (uMGMT, n = 58) GBM was analyzed with Wilcoxon signed rank test.

Results: For both mMGMT and uMGMT GBM, mean ADC values around the tumor core significantly increased as a function of distance from the core toward the periphery of the perienhancing FLAIR hyperintensity (approximately 10% increase within 5 voxels with P < 001). While group mean ADC in the tumor core was not significantly different, the distance-resolved ADC profile around the core was approximately 10% higher in mMGMT than in uMGMT GBM (P < 10-8 at 5 voxel distance from the tumor core).

Conclusions: Distance-resolved volumetric ADC analysis around the tumor core reveals tissue signatures of GBM imperceptible to the human eye on conventional MRI. The different ADC profiles around the core suggest epigenetically influenced differences in perienhancing tissue characteristics between mMGMT and uMGMT GBM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cracking the Code of Calcification: How Presence and Burden among Intracranial Arteries Influence Stroke Incidence and Recurrence. Quantitative Susceptibility Mapping in Adults with Persistent Postconcussion Symptoms after Mild Traumatic Brain Injury: An Exploratory Study. Radiomics-Based Differentiation of Glioblastoma and Metastatic Disease: Impact of Different T1-Contrast-Enhanced Sequences on Radiomics Features and Model Performance. Spontaneous Intracranial Hypotension Associated with Vascular Malformations. Endovascular Thrombectomy versus Medical Management for Acute Basilar Artery Occlusion Stroke in the Elderly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1