Long-term impact of COVID-19-related nonpharmaceutical interventions on tuberculosis: an interrupted time series analysis using Bayesian method.

IF 4.5 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Journal of Global Health Pub Date : 2025-01-24 DOI:10.7189/jogh.15.04012
Yongbin Wang, Yue Xi, Yanyan Li, Peiping Zhou, Chunjie Xu
{"title":"Long-term impact of COVID-19-related nonpharmaceutical interventions on tuberculosis: an interrupted time series analysis using Bayesian method.","authors":"Yongbin Wang, Yue Xi, Yanyan Li, Peiping Zhou, Chunjie Xu","doi":"10.7189/jogh.15.04012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The implementation of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic may inadvertently influence the epidemiology of tuberculosis (TB). (TB). However, few studies have explored how NPIs impact the long-term epidemiological trends of TB. We aimed to estimate the impact of NPIs implemented against COVID-19 on the medium- and long-term TB epidemics and to forecast the epidemiological trend of TB in Henan.</p><p><strong>Methods: </strong>We first collected monthly TB case data from January 2013 to September 2022, after which we used the data from January 2013 to December 2021 as a training data set to fit the Bayesian structural time series (BSTS) model and the remaining data as a testing data set to validate the model's predictive accuracy. We then conducted an intervention analysis using the BSTS model to evaluate the impact of the COVID-19 pandemic on TB epidemics and to project trends for the upcoming years.</p><p><strong>Results: </strong>A total of 590 455 TB cases were notified from January 2013 to September 2022, resulting in an annual incidence rate of 57.4 cases per 100 000 population, with a monthly average of 5047 cases (5.35 cases per 100 000 population). The trend in TB incidence showed a significant decrease during the study period, with an annual average percentage change of -7.3% (95% confidence interval (CI) = -8.4, -6.1). The BSTS model indicated an average monthly reduction of 25% (95% CI = 17, 32) in TB case notifications from January 2020 to December 2021 due to COVID-19 (probability of causal effect = 99.80%, P = 0.002). The mean absolute percentage error in the forecast set was 14.86%, indicating relatively high predictive accuracy of the model. Furthermore, TB cases were projected to total 43 584 (95% CI = 29 471, 57 291) from October 2022 to December 2023, indicating a continued downward trend.</p><p><strong>Conclusions: </strong>COVID-19 has had medium- and long-term impacts on TB epidemics, while the overall trend of TB incidence in Henan is generally declining. The BSTS model can be an effective option for accurately predicting the epidemic patterns of TB, and its results can provide valuable technical support for the development of prevention and control strategies.</p>","PeriodicalId":48734,"journal":{"name":"Journal of Global Health","volume":"15 ","pages":"04012"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7189/jogh.15.04012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The implementation of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic may inadvertently influence the epidemiology of tuberculosis (TB). (TB). However, few studies have explored how NPIs impact the long-term epidemiological trends of TB. We aimed to estimate the impact of NPIs implemented against COVID-19 on the medium- and long-term TB epidemics and to forecast the epidemiological trend of TB in Henan.

Methods: We first collected monthly TB case data from January 2013 to September 2022, after which we used the data from January 2013 to December 2021 as a training data set to fit the Bayesian structural time series (BSTS) model and the remaining data as a testing data set to validate the model's predictive accuracy. We then conducted an intervention analysis using the BSTS model to evaluate the impact of the COVID-19 pandemic on TB epidemics and to project trends for the upcoming years.

Results: A total of 590 455 TB cases were notified from January 2013 to September 2022, resulting in an annual incidence rate of 57.4 cases per 100 000 population, with a monthly average of 5047 cases (5.35 cases per 100 000 population). The trend in TB incidence showed a significant decrease during the study period, with an annual average percentage change of -7.3% (95% confidence interval (CI) = -8.4, -6.1). The BSTS model indicated an average monthly reduction of 25% (95% CI = 17, 32) in TB case notifications from January 2020 to December 2021 due to COVID-19 (probability of causal effect = 99.80%, P = 0.002). The mean absolute percentage error in the forecast set was 14.86%, indicating relatively high predictive accuracy of the model. Furthermore, TB cases were projected to total 43 584 (95% CI = 29 471, 57 291) from October 2022 to December 2023, indicating a continued downward trend.

Conclusions: COVID-19 has had medium- and long-term impacts on TB epidemics, while the overall trend of TB incidence in Henan is generally declining. The BSTS model can be an effective option for accurately predicting the epidemic patterns of TB, and its results can provide valuable technical support for the development of prevention and control strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Global Health
Journal of Global Health PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH -
CiteScore
6.10
自引率
2.80%
发文量
240
审稿时长
6 weeks
期刊介绍: Journal of Global Health is a peer-reviewed journal published by the Edinburgh University Global Health Society, a not-for-profit organization registered in the UK. We publish editorials, news, viewpoints, original research and review articles in two issues per year.
期刊最新文献
Age- and sex-specific care cascades to detect gaps in the care of children with tuberculosis in Bangladesh: a cohort study. Alkaline phosphatase of late pregnancy promotes the prediction of adverse birth outcomes. Behavioural interventions targeting the prevention and treatment of young children's mental health problems in low- and middle-income countries: a scoping review. Long-term impact of COVID-19-related nonpharmaceutical interventions on tuberculosis: an interrupted time series analysis using Bayesian method. Pandemic preparedness in Vietnam: a review of health system resilience and areas for improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1