Effect of shaking and piling processing on improving the aroma quality of green tea

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Research International Pub Date : 2025-02-01 DOI:10.1016/j.foodres.2024.115624
Zheng Tu , Sixu Li , Meng Tao , Weizhong He , Zaifa Shu , Shanshan Wang , Zhengquan Liu
{"title":"Effect of shaking and piling processing on improving the aroma quality of green tea","authors":"Zheng Tu ,&nbsp;Sixu Li ,&nbsp;Meng Tao ,&nbsp;Weizhong He ,&nbsp;Zaifa Shu ,&nbsp;Shanshan Wang ,&nbsp;Zhengquan Liu","doi":"10.1016/j.foodres.2024.115624","DOIUrl":null,"url":null,"abstract":"<div><div>Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes. A total of 58 volatile compounds were detected, with SPGT exhibiting the highest concentration of aroma compounds among the tested green teas. Eight key aroma compounds were selected based on a relative odor activity value (ROAV) greater than 1 in SPGT: dimethyl sulfide (71.14, cooked corn-like), 2-methylbutanal (3.17, cereal), octanal (1.31, fruity), linalool (5.25, floral), nonanal (5.00, floral), <em>(E)</em>-2-nonenal (2.81, cucumber), decanal (22.90, fruity), and <em>β</em>-ionone (60.51, floral). The concentration of aroma compounds, especially for floral and fruity key volatile compounds significantly increased during the shaking and piling process (<em>p</em> &lt; 0.05), and their formation pathways help explained these changes. Our results provided a new theoretical foundation and practical guidelines for producing the high-aroma green tea.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"201 ","pages":"Article 115624"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924016958","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes. A total of 58 volatile compounds were detected, with SPGT exhibiting the highest concentration of aroma compounds among the tested green teas. Eight key aroma compounds were selected based on a relative odor activity value (ROAV) greater than 1 in SPGT: dimethyl sulfide (71.14, cooked corn-like), 2-methylbutanal (3.17, cereal), octanal (1.31, fruity), linalool (5.25, floral), nonanal (5.00, floral), (E)-2-nonenal (2.81, cucumber), decanal (22.90, fruity), and β-ionone (60.51, floral). The concentration of aroma compounds, especially for floral and fruity key volatile compounds significantly increased during the shaking and piling process (p < 0.05), and their formation pathways help explained these changes. Our results provided a new theoretical foundation and practical guidelines for producing the high-aroma green tea.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
期刊最新文献
Corrigendum to “Impact of structure and composition on the digestibility and nutritional quality of alternative protein-rich extracts from the green seaweed Ulva lacinulata” [Food Res. Int. (201) (2025) 115646] Establishing optimal parameters to mitigate the heating effects caused by CPMAS sequence in 13C solid-state NMR studies of cocoa butter and other fat samples Hydroxylation of dihydromyricetin via Beauveria bassiana fermentation enhances its efficacy in improving insulin signaling: Insights into inflammation, oxidative stress, and endoplasmic reticulum stress Deciphering the inhibitory mechanisms of cinnamaldehyde on biofilm formation of Listeria monocytogenes and implement these strategies to control its transfer to beef surfaces Effect of cultivar and process on the astringency of matcha based on flavonoids-targeted metabolomic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1