Convergent evolution in angiosperms adapted to cold climates.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Communications Pub Date : 2025-02-10 Epub Date: 2025-01-23 DOI:10.1016/j.xplc.2025.101258
Shuo Wang, Jing Li, Ping Yu, Liangyu Guo, Junhui Zhou, Jian Yang, Wenwu Wu
{"title":"Convergent evolution in angiosperms adapted to cold climates.","authors":"Shuo Wang, Jing Li, Ping Yu, Liangyu Guo, Junhui Zhou, Jian Yang, Wenwu Wu","doi":"10.1016/j.xplc.2025.101258","DOIUrl":null,"url":null,"abstract":"<p><p>Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms at sub-zero temperatures. We begin by introducing the history of research on convergent and parallel evolution, defining all independent similarities as convergent evolution. Our analysis reveals that frost zones (periodic or constant), which cover 49.1% of Earth's land surface, host 137 angiosperm families, with over 90% of their species thriving in these regions. In this context, we revisit the global biogeography and evolutionary trajectories of plant traits, such as herbaceous form and deciduous leaves, that are thought to be evasion strategies for frost adaptation. At the physiological and molecular levels, many angiosperms have independently evolved cold acclimation mechanisms through multiple pathways in addition to the well-characterized C-repeat binding factor/dehydration-responsive element binding protein 1 (CBF/DREB1) regulatory pathway. These convergent adaptations have occurred across various molecular levels, including amino acid substitutions and changes in gene duplication and expression within the same or similar functional pathways; however, identical amino acid changes are rare. Our results also highlight the prevalence of polyploidy in frost zones and the occurrence of paleopolyploidization events during global cooling. These patterns suggest repeated evolution in cold climates. Finally, we discuss plant domestication and predict climate zone shifts due to global warming and their effects on plant migration and in situ adaptation. Overall, the integration of ecological and molecular perspectives is essential for understanding and forecasting plant responses to climate change.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101258"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101258","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms at sub-zero temperatures. We begin by introducing the history of research on convergent and parallel evolution, defining all independent similarities as convergent evolution. Our analysis reveals that frost zones (periodic or constant), which cover 49.1% of Earth's land surface, host 137 angiosperm families, with over 90% of their species thriving in these regions. In this context, we revisit the global biogeography and evolutionary trajectories of plant traits, such as herbaceous form and deciduous leaves, that are thought to be evasion strategies for frost adaptation. At the physiological and molecular levels, many angiosperms have independently evolved cold acclimation mechanisms through multiple pathways in addition to the well-characterized C-repeat binding factor/dehydration-responsive element binding protein 1 (CBF/DREB1) regulatory pathway. These convergent adaptations have occurred across various molecular levels, including amino acid substitutions and changes in gene duplication and expression within the same or similar functional pathways; however, identical amino acid changes are rare. Our results also highlight the prevalence of polyploidy in frost zones and the occurrence of paleopolyploidization events during global cooling. These patterns suggest repeated evolution in cold climates. Finally, we discuss plant domestication and predict climate zone shifts due to global warming and their effects on plant migration and in situ adaptation. Overall, the integration of ecological and molecular perspectives is essential for understanding and forecasting plant responses to climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
期刊最新文献
Breeding herbicide-resistant rice using CRISPR-Cas gene editing and other technologies. Precise customization of plant architecture by combinatorial genetic modification of peptide ligands. An enhancer-transposable element from purple leaf tea varieties underlies the transition from evergreen to purple leaf color. The gap-free assembly of pepper genome reveals transposable-element-driven expansion and rapid evolution of pericentromeres. A telomere-to-telomere genome assembly of Salix cheilophila reveals its evolutionary signatures for environmental adaptation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1