Long-term smoking contributes to aging frailty and inflammatory response.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-01-17 DOI:10.17305/bb.2024.11722
Huijin Hou, Yidi Chai, Ting Zhang, Yue Liang, Lan Huang, Xu Cao, Shufang Liang
{"title":"Long-term smoking contributes to aging frailty and inflammatory response.","authors":"Huijin Hou, Yidi Chai, Ting Zhang, Yue Liang, Lan Huang, Xu Cao, Shufang Liang","doi":"10.17305/bb.2024.11722","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the health challenges linked to frailty in the elderly, particularly those worsened by cigarette smoke, have become more pronounced. However, quantitative studies examining the impact of smoking dosage on frailty in this population remain limited. To address this gap, we developed a model using smoke-exposed elderly mice. Fifteen-month-old C57BL/6J mice were exposed to smoke from two burning cigarettes for 15 min in a whole-body chamber. This exposure occurred 4, 6, and 8 times daily for 30 days, representing low, medium, and high smoking dosages, respectively. Frailty levels were assessed through rotation and grip strength tests, alongside lung histopathology and inflammatory factor protein expression analyses across the three dosage groups. Additionally, we used the Gene Expression Omnibus (GEO) database to validate the correlation between frailty and inflammation in elderly smokers, facilitating cross-comparisons between animal model findings and human sample data. Our results show that mice exposed to high-dose smoking were significantly more prone to frailty, with notable reductions in maximal grip strength (P < 0.01) and drop time (P < 0.001). Among human samples, 69.2% of elderly smokers exhibited a frailty phenotype, compared to just 15.4% of nonsmokers. Both smoking-exposed mice and elderly smokers demonstrated upregulation of tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) in lung tissue and serum. Mechanistically, this upregulation activates the NF-κB signaling pathway. Our findings quantitatively link smoking-induced frailty to increased levels of TNF-α and IL-1β, providing experimental evidence for the diagnosis and prevention of frailty in elderly populations.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the health challenges linked to frailty in the elderly, particularly those worsened by cigarette smoke, have become more pronounced. However, quantitative studies examining the impact of smoking dosage on frailty in this population remain limited. To address this gap, we developed a model using smoke-exposed elderly mice. Fifteen-month-old C57BL/6J mice were exposed to smoke from two burning cigarettes for 15 min in a whole-body chamber. This exposure occurred 4, 6, and 8 times daily for 30 days, representing low, medium, and high smoking dosages, respectively. Frailty levels were assessed through rotation and grip strength tests, alongside lung histopathology and inflammatory factor protein expression analyses across the three dosage groups. Additionally, we used the Gene Expression Omnibus (GEO) database to validate the correlation between frailty and inflammation in elderly smokers, facilitating cross-comparisons between animal model findings and human sample data. Our results show that mice exposed to high-dose smoking were significantly more prone to frailty, with notable reductions in maximal grip strength (P < 0.01) and drop time (P < 0.001). Among human samples, 69.2% of elderly smokers exhibited a frailty phenotype, compared to just 15.4% of nonsmokers. Both smoking-exposed mice and elderly smokers demonstrated upregulation of tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) in lung tissue and serum. Mechanistically, this upregulation activates the NF-κB signaling pathway. Our findings quantitatively link smoking-induced frailty to increased levels of TNF-α and IL-1β, providing experimental evidence for the diagnosis and prevention of frailty in elderly populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Clinical profile and risk factors for respiratory failure in children with Mycoplasma pneumoniae infection. Association between diabetes mellitus and tinnitus: A meta-analysis. Long-term smoking contributes to aging frailty and inflammatory response. Deep learning approach based on a patch residual for pediatric supracondylar subtle fracture detection. The molecular mechanisms of cuproptosis and its relevance to atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1