Mixed lipopeptide-based mucosal vaccine candidate induces cross-variant immunity and protects against SARS-CoV-2 infection in hamsters.

Q3 Medicine ImmunoHorizons Pub Date : 2025-01-24 DOI:10.1093/immhor/vlae011
Raj S Patel, Diana Duque, Jegarubee Bavananthasivam, Melissa Hewitt, Jagdeep K Sandhu, Rakesh Kumar, Anh Tran, Babita Agrawal
{"title":"Mixed lipopeptide-based mucosal vaccine candidate induces cross-variant immunity and protects against SARS-CoV-2 infection in hamsters.","authors":"Raj S Patel, Diana Duque, Jegarubee Bavananthasivam, Melissa Hewitt, Jagdeep K Sandhu, Rakesh Kumar, Anh Tran, Babita Agrawal","doi":"10.1093/immhor/vlae011","DOIUrl":null,"url":null,"abstract":"<p><p>The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent. However, the current vaccines are suboptimal; they elicit incomplete and short-lived protection and are ineffective against evolving virus variants. Updating the spike antigen according to the prevailing variant and repeated boosters is not the long-term solution. We have designed a lipopeptide-based, mucosal, pan-coronavirus vaccine candidate, derived from highly conserved and/or functional regions of the SARS-CoV-2 spike, nucleocapsid, and membrane proteins. Our studies demonstrate that the designed lipopeptides (LPMix) induced both cellular and humoral (mucosal and systemic) immune responses upon intranasal immunization in mice. Furthermore, the antibodies bound to the wild-type and mutated S proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Delta and Omicron, and also led to efficient neutralization in a surrogate viral neutralization assay. Our sequence alignment and 3-dimensional molecular modeling studies demonstrated that spike-derived epitopes, P1 and P2, are sequentially and/or structurally conserved among the SARS-CoV-2 variants. The addition of a novel mucosal adjuvant, heat-killed Caulobacter crescentus, to the lipopeptide vaccine significantly bolstered mucosal antibody responses. Finally, the lipopeptide-based intranasal vaccine demonstrated significant improvement in lung pathologies in a hamster model of SARS-CoV-2 infection. These studies are fundamentally important and open new avenues in the investigation of an innovative, broadly protective intranasal vaccine platform for SARS-CoV-2 and its variants.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlae011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent. However, the current vaccines are suboptimal; they elicit incomplete and short-lived protection and are ineffective against evolving virus variants. Updating the spike antigen according to the prevailing variant and repeated boosters is not the long-term solution. We have designed a lipopeptide-based, mucosal, pan-coronavirus vaccine candidate, derived from highly conserved and/or functional regions of the SARS-CoV-2 spike, nucleocapsid, and membrane proteins. Our studies demonstrate that the designed lipopeptides (LPMix) induced both cellular and humoral (mucosal and systemic) immune responses upon intranasal immunization in mice. Furthermore, the antibodies bound to the wild-type and mutated S proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Delta and Omicron, and also led to efficient neutralization in a surrogate viral neutralization assay. Our sequence alignment and 3-dimensional molecular modeling studies demonstrated that spike-derived epitopes, P1 and P2, are sequentially and/or structurally conserved among the SARS-CoV-2 variants. The addition of a novel mucosal adjuvant, heat-killed Caulobacter crescentus, to the lipopeptide vaccine significantly bolstered mucosal antibody responses. Finally, the lipopeptide-based intranasal vaccine demonstrated significant improvement in lung pathologies in a hamster model of SARS-CoV-2 infection. These studies are fundamentally important and open new avenues in the investigation of an innovative, broadly protective intranasal vaccine platform for SARS-CoV-2 and its variants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Comparison of immune responses to respiratory syncytial virus in infancy, childhood, and adulthood using an in vitro model of human respiratory infection. Mixed lipopeptide-based mucosal vaccine candidate induces cross-variant immunity and protects against SARS-CoV-2 infection in hamsters. Single-cell sequencing of human Langerhans cells identifies altered gene expression profiles in patients with atopic dermatitis. Reduced autoimmunity associated with deletion of host CD73. Defining a novel DYRK1A-gp130/IL-6R-pSTAT axis that regulates Th17 differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1