Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus.

Yulong Yang, Gang Zhou, Yining Ding, Wenjing Shi, Yueqian Chen, Chunbo Ge, Baocai Xu, Liu Yang
{"title":"Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus.","authors":"Yulong Yang, Gang Zhou, Yining Ding, Wenjing Shi, Yueqian Chen, Chunbo Ge, Baocai Xu, Liu Yang","doi":"10.1016/j.foodres.2025.115680","DOIUrl":null,"url":null,"abstract":"<p><p>Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study aimed to investigate the effects of inoculation with various combinations of starters on the microbial communities and metabolic profiles of fermented sausages. High-throughput sequencing revealed that, during sausage fermentation, Firmicutes was the dominant bacterial phylum, and the primary microorganisms were Lactococcus, Staphylococcus, Lactobacillus, and Pseudomonas. On the last day of fermentation, the highest abundance of Staphylococcus was observed in the co-inoculation group. Furthermore, inoculated fermentation effectively inhibited the growth of pathogenic and spoilage bacteria. Metabolomic analysis of the four groups of samples identified 208 metabolites in positive ion mode and 109 in negative ion mode. A total of 31 differential metabolites were identified (P < 0.05, variable importance in the projection >1.5), primarily benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls. Five crucial differential metabolites (subaphylline, naringenin, 1-hexadecanol, beta-alanyl-L-lysine, and 3'-AMP) were identified as potential biomarkers for fermented sausages. Key differential metabolite metabolic pathways indicated that L. plantarum YR07 dominated in metabolite regulation during sausage fermentation, and S. xylosus Y-18 downregulated the fatty acid degradation pathway, which also affected the metabolism of fermented sausages. Co-cultivation of the two bacteria exhibited a synergistic effect on the metabolism of the fermented sausages. This study offers further insights into improving the quality of fermented sausages, thereby establishing a theoretical foundation for the production of excellent fermenters.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115680"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study aimed to investigate the effects of inoculation with various combinations of starters on the microbial communities and metabolic profiles of fermented sausages. High-throughput sequencing revealed that, during sausage fermentation, Firmicutes was the dominant bacterial phylum, and the primary microorganisms were Lactococcus, Staphylococcus, Lactobacillus, and Pseudomonas. On the last day of fermentation, the highest abundance of Staphylococcus was observed in the co-inoculation group. Furthermore, inoculated fermentation effectively inhibited the growth of pathogenic and spoilage bacteria. Metabolomic analysis of the four groups of samples identified 208 metabolites in positive ion mode and 109 in negative ion mode. A total of 31 differential metabolites were identified (P < 0.05, variable importance in the projection >1.5), primarily benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls. Five crucial differential metabolites (subaphylline, naringenin, 1-hexadecanol, beta-alanyl-L-lysine, and 3'-AMP) were identified as potential biomarkers for fermented sausages. Key differential metabolite metabolic pathways indicated that L. plantarum YR07 dominated in metabolite regulation during sausage fermentation, and S. xylosus Y-18 downregulated the fatty acid degradation pathway, which also affected the metabolism of fermented sausages. Co-cultivation of the two bacteria exhibited a synergistic effect on the metabolism of the fermented sausages. This study offers further insights into improving the quality of fermented sausages, thereby establishing a theoretical foundation for the production of excellent fermenters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of glycosidases and GSH pretreatments, fermentation temperatures, and aging time on the physicochemical, organic acids, and aroma profiles of perry. Multi-Omics analysis reveals the sensory quality and fungal communities of Tibetan teas produced by wet- and dry-piling fermentation. Fabrication and saltiness enhancement of salt hollow particles by interface migration. Fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 improves nutritional quality and volatile profile of sea buckthorn-based cereal beverage. A comprehensive quantitative LC-MS/MS method for rapid gelatin source identification in food products: Comparison with PCR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1