Surfactant-free W/O high internal phase emulsions co-stabilized by beeswax and phytosterol crystal scaffold: A promising fat mimetic with enhanced mechanical and mouthfeel properties
Ying Song , Xia Zhang , Jiarong Li , Rixin Zhang , Bing Li , Lin Li
{"title":"Surfactant-free W/O high internal phase emulsions co-stabilized by beeswax and phytosterol crystal scaffold: A promising fat mimetic with enhanced mechanical and mouthfeel properties","authors":"Ying Song , Xia Zhang , Jiarong Li , Rixin Zhang , Bing Li , Lin Li","doi":"10.1016/j.foodres.2024.115614","DOIUrl":null,"url":null,"abstract":"<div><div>Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for ‘natural’ ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far. This study explored using an all-nature crystal scaffold to stabilize W/O-HIPEs as fat mimetics under surfactant-free conditions, featuring multi-sensorial attributes. The crystal scaffold was designed by varying the ratios (10:0, 8:2, 6:4, 4:6, 2:8, and 0:10, w/w) of beeswax (BW) and phytosterol (PS), two sustainable crystal fractions. The optimal stabilization of W/O-HIPEs (φ = 0.75) was achieved at a BW/PS ratio of 6:4, with only a slight increment in droplet size for either static storage (30 days) or freeze–thaw (3 cycles) treatment. Crystal particles of BW and PS performed a synergistic effect to stabilize W/O-HIPEs by forming a network in the bulk phase and adsorbing onto droplet surfaces as a Pickering stabilizer. The crystalline layer on the droplet surfaces also generated bridging networks, providing a dual stabilization mechanism for W/O-HIPEs. Incorporating 3.0 wt% of BW and PS (BW/PS = 6:4, w/w), W/O-HIPEs exhibited the required modulus of 1 × 10<sup>5</sup> Pa to mimic fat. Moreover, these W/O-HIPEs exhibited superior lubrication behavior (friction coefficients below 0.06) compared to pure liquid oil at low sliding speeds (0–2.5 mm/s), enhancing mouthfeel. However, increasing the BW and PS crystals content to 4.0 wt% led to increased brittleness, with a reduction in the emulsion’s lubricity at the hydrodynamic region. These findings highlight the potential of natural crystals to develop low-calorie W/O-HIPEs as fat mimetics in the food industry.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"201 ","pages":"Article 115614"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924016855","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for ‘natural’ ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far. This study explored using an all-nature crystal scaffold to stabilize W/O-HIPEs as fat mimetics under surfactant-free conditions, featuring multi-sensorial attributes. The crystal scaffold was designed by varying the ratios (10:0, 8:2, 6:4, 4:6, 2:8, and 0:10, w/w) of beeswax (BW) and phytosterol (PS), two sustainable crystal fractions. The optimal stabilization of W/O-HIPEs (φ = 0.75) was achieved at a BW/PS ratio of 6:4, with only a slight increment in droplet size for either static storage (30 days) or freeze–thaw (3 cycles) treatment. Crystal particles of BW and PS performed a synergistic effect to stabilize W/O-HIPEs by forming a network in the bulk phase and adsorbing onto droplet surfaces as a Pickering stabilizer. The crystalline layer on the droplet surfaces also generated bridging networks, providing a dual stabilization mechanism for W/O-HIPEs. Incorporating 3.0 wt% of BW and PS (BW/PS = 6:4, w/w), W/O-HIPEs exhibited the required modulus of 1 × 105 Pa to mimic fat. Moreover, these W/O-HIPEs exhibited superior lubrication behavior (friction coefficients below 0.06) compared to pure liquid oil at low sliding speeds (0–2.5 mm/s), enhancing mouthfeel. However, increasing the BW and PS crystals content to 4.0 wt% led to increased brittleness, with a reduction in the emulsion’s lubricity at the hydrodynamic region. These findings highlight the potential of natural crystals to develop low-calorie W/O-HIPEs as fat mimetics in the food industry.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.