Isabelle M. Andersen, Jason M. Taylor, Patrick T. Kelly, Alexa K. Hoke, Caleb J. Robbins, J. Thad Scott
{"title":"Nitrogen fixation may not alleviate stoichiometric imbalances that limit primary production in eutrophic lake ecosystems","authors":"Isabelle M. Andersen, Jason M. Taylor, Patrick T. Kelly, Alexa K. Hoke, Caleb J. Robbins, J. Thad Scott","doi":"10.1002/ecy.4516","DOIUrl":null,"url":null,"abstract":"Ecosystem‐scale primary production may be proximately limited by nitrogen (N) but ultimately limited by phosphorus (P) because N<jats:sub>2</jats:sub> fixation contributes new N that accumulates relative to P at ecosystem scales. However, the duration needed to transition between proximate N limitation and ultimate P limitation remains unknown for most ecosystems, including lakes. Here we present the results of a fully replicated, multi‐annual lake mesocosm experiment that permitted full air‐water‐sediment interactions that mimicked lake ecosystem ecology. We manipulated N supply relative to P to achieve a gradient of N:P stoichiometry. Despite N<jats:sub>2</jats:sub> fixation contributing as much as 80% of reactive N in the low N treatments, phytoplankton biomass in these treatments was not different from the unfertilized controls. This suggests that primary production remained N limited in the lowest N treatments, even when N<jats:sub>2</jats:sub> fixation was substantial. Although fixed N inputs reduced the N imbalance relative to P in the low N treatments seasonally, fixed N did not accumulate over multiple years. Additionally, reactive N did not readily accumulate in the high N treatments. Instead, water column stoichiometry was proportional to the experimental N and P additions, suggesting a strong influence from external nutrient loading. Thus, we found no evidence that N accumulation from N<jats:sub>2</jats:sub> fixation was sufficient to trigger a transition to ultimate P limitation seasonally or across our 3‐year experiment. Rather, our results indicate that proximate N limitation perpetuates in eutrophic lakes, likely due to N export being proportional to its inputs. These findings offer new insight regarding the biogeochemical controls on ecosystem stoichiometry and their influence on the timeframe for proximate N limitation and ultimate P limitation in freshwater, marine, and terrestrial ecosystems.","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"206 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecy.4516","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecosystem‐scale primary production may be proximately limited by nitrogen (N) but ultimately limited by phosphorus (P) because N2 fixation contributes new N that accumulates relative to P at ecosystem scales. However, the duration needed to transition between proximate N limitation and ultimate P limitation remains unknown for most ecosystems, including lakes. Here we present the results of a fully replicated, multi‐annual lake mesocosm experiment that permitted full air‐water‐sediment interactions that mimicked lake ecosystem ecology. We manipulated N supply relative to P to achieve a gradient of N:P stoichiometry. Despite N2 fixation contributing as much as 80% of reactive N in the low N treatments, phytoplankton biomass in these treatments was not different from the unfertilized controls. This suggests that primary production remained N limited in the lowest N treatments, even when N2 fixation was substantial. Although fixed N inputs reduced the N imbalance relative to P in the low N treatments seasonally, fixed N did not accumulate over multiple years. Additionally, reactive N did not readily accumulate in the high N treatments. Instead, water column stoichiometry was proportional to the experimental N and P additions, suggesting a strong influence from external nutrient loading. Thus, we found no evidence that N accumulation from N2 fixation was sufficient to trigger a transition to ultimate P limitation seasonally or across our 3‐year experiment. Rather, our results indicate that proximate N limitation perpetuates in eutrophic lakes, likely due to N export being proportional to its inputs. These findings offer new insight regarding the biogeochemical controls on ecosystem stoichiometry and their influence on the timeframe for proximate N limitation and ultimate P limitation in freshwater, marine, and terrestrial ecosystems.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.