Regulation of Rhizobial Nodulation Genes by Flavonoid-Independent NodD Supports Nitrogen-Fixing Symbioses With Legumes

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2025-01-25 DOI:10.1111/1462-2920.70014
Timothy L. Haskett, Louise Cooke, Patrick Green, Philip S. Poole
{"title":"Regulation of Rhizobial Nodulation Genes by Flavonoid-Independent NodD Supports Nitrogen-Fixing Symbioses With Legumes","authors":"Timothy L. Haskett,&nbsp;Louise Cooke,&nbsp;Patrick Green,&nbsp;Philip S. Poole","doi":"10.1111/1462-2920.70014","DOIUrl":null,"url":null,"abstract":"<p>Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis. Although evidence suggests differential regulation of <i>nodD</i> expression and NF biosynthesis during symbiosis, the necessity of this regulation for the formation of nitrogen-fixing nodules remains uncertain. Here, we demonstrate that deletion of the <i>Rlv</i>3841 NodD regulatory domain results in a constitutively active protein (NodD<sub>FI</sub>) capable of activating NF biosynthesis gene expression without the presence of flavonoids. Optimised constitutive expression of <i>nodD</i><sub><i>FI</i></sub> or <i>nodD3</i> in <i>nodD</i> null mutants led to wild-type levels of nodulation and nitrogen fixation in pea and <i>M. truncatula</i>, respectively, indicating that flavonoid-regulated <i>nodD</i> expression is not essential for supporting symbiosis. These findings illustrate that transcriptional control of flavonoid-independent NodD regulators can be employed to drive NF biosynthesis, which holds potential for engineering symbiosis between rhizobia and cereals equipped with reconstituted NF receptors.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis. Although evidence suggests differential regulation of nodD expression and NF biosynthesis during symbiosis, the necessity of this regulation for the formation of nitrogen-fixing nodules remains uncertain. Here, we demonstrate that deletion of the Rlv3841 NodD regulatory domain results in a constitutively active protein (NodDFI) capable of activating NF biosynthesis gene expression without the presence of flavonoids. Optimised constitutive expression of nodDFI or nodD3 in nodD null mutants led to wild-type levels of nodulation and nitrogen fixation in pea and M. truncatula, respectively, indicating that flavonoid-regulated nodD expression is not essential for supporting symbiosis. These findings illustrate that transcriptional control of flavonoid-independent NodD regulators can be employed to drive NF biosynthesis, which holds potential for engineering symbiosis between rhizobia and cereals equipped with reconstituted NF receptors.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Bacteriophage–Bacteria Interactions Promote Ecological Multifunctionality in Compost-Applied Soils Microbial Community Metabolism of Coral Reef Exometabolomes Broadens the Chemodiversity of Labile Dissolved Organic Matter Large Filamentous Bacteria Isolated From Sulphidic Sediments Reveal Novel Species and Distinct Energy and Defence Mechanisms for Survival The Flavohemoglobin Hmp and Nitric Oxide Reductase Restrict Initial nir Expression in the Bet-Hedging Denitrifier Paracoccus denitrificans by Curtailing Hypoxic NO Signalling Metagenome-Assembled Genomes for Oligotrophic Nitrifiers From a Mountainous Gravelbed Floodplain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1