A Second Near-Infrared Window-Responsive Metal–Organic-Framework-Based Photosensitizer for Tumor Immunotherapy via Synergistic Ferroptosis and STING Activation

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-24 DOI:10.1021/jacs.4c13241
Huan Zhao, Shujuan Jin, Yang Liu, Qian Wang, Brynne Shu Ni Tan, Shihuai Wang, Wang-Kang Han, Xuping Niu, Yanli Zhao
{"title":"A Second Near-Infrared Window-Responsive Metal–Organic-Framework-Based Photosensitizer for Tumor Immunotherapy via Synergistic Ferroptosis and STING Activation","authors":"Huan Zhao, Shujuan Jin, Yang Liu, Qian Wang, Brynne Shu Ni Tan, Shihuai Wang, Wang-Kang Han, Xuping Niu, Yanli Zhao","doi":"10.1021/jacs.4c13241","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature. Fortunately, the stimulator of interferon genes (STING) pathway, known for immune activation, has been linked to vasculature normalization. In this study, we developed a nanoplatform (Fe-THBQ/SR) by loading a STING agonist (SR-717) into an iron-tetrahydroxy-1,4-benzoquinone (Fe-THBQ) metal–organic framework. Fe-THBQ was proven to be an effective NIR-II photosensitizer, generating numerous reactive oxygen species (ROS) under 1064 nm laser irradiation. These ROS downregulated heat shock protein expression, consequently promoting mild-photothermal therapy (mild-PTT), and facilitated ferroptosis by depleting glutathione (GSH)/glutathione peroxidase 4. Moreover, Fe-THBQ/SR released SR-717 upon GSH stimulation, synergizing with the ROS-mediated double-stranded DNA leakage to enhance STING activation. This process contributed to tumor vasculature normalization and hypoxia alleviation, thereby enhancing the PDT efficacy. Overall, we presented a versatile single-laser-triggered nanoplatform (Fe-THBQ/SR) for NIR-II PDT and NIR-II mild-PTT and simultaneously coupled it with the effective activation of STING to form a reinforcing cycle. These synergistic enhancements increased the immunogenicity of tumor cells, remodeled the immunosuppressive tumor microenvironment, increased T lymphocyte infiltration, and improved therapeutic outcomes.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"11 3 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13241","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature. Fortunately, the stimulator of interferon genes (STING) pathway, known for immune activation, has been linked to vasculature normalization. In this study, we developed a nanoplatform (Fe-THBQ/SR) by loading a STING agonist (SR-717) into an iron-tetrahydroxy-1,4-benzoquinone (Fe-THBQ) metal–organic framework. Fe-THBQ was proven to be an effective NIR-II photosensitizer, generating numerous reactive oxygen species (ROS) under 1064 nm laser irradiation. These ROS downregulated heat shock protein expression, consequently promoting mild-photothermal therapy (mild-PTT), and facilitated ferroptosis by depleting glutathione (GSH)/glutathione peroxidase 4. Moreover, Fe-THBQ/SR released SR-717 upon GSH stimulation, synergizing with the ROS-mediated double-stranded DNA leakage to enhance STING activation. This process contributed to tumor vasculature normalization and hypoxia alleviation, thereby enhancing the PDT efficacy. Overall, we presented a versatile single-laser-triggered nanoplatform (Fe-THBQ/SR) for NIR-II PDT and NIR-II mild-PTT and simultaneously coupled it with the effective activation of STING to form a reinforcing cycle. These synergistic enhancements increased the immunogenicity of tumor cells, remodeled the immunosuppressive tumor microenvironment, increased T lymphocyte infiltration, and improved therapeutic outcomes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics Assessing the Robustness of the Clock Transition in a Mononuclear S = 1 Ni(II) Complex Spin Qubit Disentangling Driving Force Effects, Polar Effects, e–/H+ Imbalance, and Other Influences on H-Atom Transfer Reactions Chemospecific Heterostructure and Heteromaterial Assembly of Metal–Organic Framework Nanoparticles Serine Hydrolase-Catalyzed Polyol Lipids are Necessary for Rodlet Layer Formation on the Cell Wall of Entomopathogenic Fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1