Radiological dose from seafood ingestion; a global summary from 40 years of study

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Critical Reviews in Environmental Science and Technology Pub Date : 2025-03-19 DOI:10.1080/10643389.2024.2413202
Mathew P. Johansen, Justin P. Gwynn, Julia G. Carpenter, Sabine Charmasson, Paul Mc Ginnity, Airi Mori, Blake Orr, Marie Simon-Cornu, Iolanda Osvath
{"title":"Radiological dose from seafood ingestion; a global summary from 40 years of study","authors":"Mathew P. Johansen, Justin P. Gwynn, Julia G. Carpenter, Sabine Charmasson, Paul Mc Ginnity, Airi Mori, Blake Orr, Marie Simon-Cornu, Iolanda Osvath","doi":"10.1080/10643389.2024.2413202","DOIUrl":null,"url":null,"abstract":"Seafood is an important source for meeting future global nutrient demands. However, it also contributes disproportionately to the radiological ingestion dose of more than five billion world consumers– up to ∼70%–80% of the total-foods dose in some countries. Although numerous studies report seafood doses in specific populations, there is still no comprehensive evaluation answering basic questions such as “what is the ingestion dose to the average global seafood consumer?” Analysis of 238 worldwide seafood dose estimates suggests that typical adult consumers receive from 0.13 to 0.21 mSv, with a likely best estimate of 0.15 mSv per annual seafood intake. Those consuming large amounts of seafood, particularly bivalves, may experience ingestion doses exceeding 1 mSv per annual intake, surpassing other routine background dose sources. The published studies suggest that doses of 3 mSv or greater are surpassed in about 150 million adult seafood consumers worldwide. Almost all this dose comes from the natural radionuclides that are prevalent in marine systems–especially <sup>210</sup>Po. While trace levels of anthropogenic radionuclides are ubiquitous in seafoods (e.g.,<sup>137</sup>Cs and <sup>239</sup>Pu), the added dose from these is typically orders of magnitude lower. Even following the large-scale releases from the Fukushima accident, with food safety controls in place, the additional dose to consumers in Japan was small relative to routine dose from natural background radionuclides. However, the worldwide seafood dose estimates span seven orders of magnitude, indicating a need for an assessment that integrates global seafood radionuclide data as well as incorporating changes in seafood consumption and production patterns.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"109 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2413202","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seafood is an important source for meeting future global nutrient demands. However, it also contributes disproportionately to the radiological ingestion dose of more than five billion world consumers– up to ∼70%–80% of the total-foods dose in some countries. Although numerous studies report seafood doses in specific populations, there is still no comprehensive evaluation answering basic questions such as “what is the ingestion dose to the average global seafood consumer?” Analysis of 238 worldwide seafood dose estimates suggests that typical adult consumers receive from 0.13 to 0.21 mSv, with a likely best estimate of 0.15 mSv per annual seafood intake. Those consuming large amounts of seafood, particularly bivalves, may experience ingestion doses exceeding 1 mSv per annual intake, surpassing other routine background dose sources. The published studies suggest that doses of 3 mSv or greater are surpassed in about 150 million adult seafood consumers worldwide. Almost all this dose comes from the natural radionuclides that are prevalent in marine systems–especially 210Po. While trace levels of anthropogenic radionuclides are ubiquitous in seafoods (e.g.,137Cs and 239Pu), the added dose from these is typically orders of magnitude lower. Even following the large-scale releases from the Fukushima accident, with food safety controls in place, the additional dose to consumers in Japan was small relative to routine dose from natural background radionuclides. However, the worldwide seafood dose estimates span seven orders of magnitude, indicating a need for an assessment that integrates global seafood radionuclide data as well as incorporating changes in seafood consumption and production patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
期刊最新文献
Radiological dose from seafood ingestion; a global summary from 40 years of study Effects of rare earth elements in the aquatic environment: Implications for ecotoxicological testing Secondary organophosphate esters: A review of environmental source, occurrence, and human exposure U(VI) removal on polymer adsorbents: Recent development and future challenges Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1