Easy synthesis of self-healing thermoplastic elastomer (TPE) via functionalization of styrene block copolymer (SEBS) with a cyclic amine compound in melt state and rheological assessment of non-covalent dynamic interactions
{"title":"Easy synthesis of self-healing thermoplastic elastomer (TPE) via functionalization of styrene block copolymer (SEBS) with a cyclic amine compound in melt state and rheological assessment of non-covalent dynamic interactions","authors":"Mine Begum Alanalp, Ali Durmus","doi":"10.1016/j.polymer.2025.128083","DOIUrl":null,"url":null,"abstract":"In this study, an amine functionalized thermoplastic elastomer was easily synthesized by a semi-batch reactive melt compounding method in an internal mixer at 165 °C using maleic anhydride grafted styrene-<em>block</em>-ethylene/butylene-<em>block</em>-styrene copolymer (SEBS-g-MAh) as elastomer phase and 3-amino-1,2,4-triazole (TA) as cyclic amine compound. Then a metal salt, zinc nitrate (Zn(NO<sub>3</sub>)<sub>2</sub>), was introduced into the melt mixer to form metal-ligand interactions between amine functionalized TPE. Structural, mechanical, rheological, and viscoelastic properties of functional TPE were characterized by various analytical methods such as FTIR, DMA, rotational rheometer, and tensile test. FTIR analysis confirmed that the primary amine groups of cyclic amine compound reacted with maleic anhydride of SEBS-g-MAh to form maleimid groups. Formation of metal-ligand interactions in the modified TPE structure was also shown with various rheological measurements such as strain-dependent, frequency-dependent, and time-dependent test procedures and different mathematical models. It was shown that the strong metal-ligand interactions provided the modified TPE, temperature-induced self-healing property.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"26 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128083","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an amine functionalized thermoplastic elastomer was easily synthesized by a semi-batch reactive melt compounding method in an internal mixer at 165 °C using maleic anhydride grafted styrene-block-ethylene/butylene-block-styrene copolymer (SEBS-g-MAh) as elastomer phase and 3-amino-1,2,4-triazole (TA) as cyclic amine compound. Then a metal salt, zinc nitrate (Zn(NO3)2), was introduced into the melt mixer to form metal-ligand interactions between amine functionalized TPE. Structural, mechanical, rheological, and viscoelastic properties of functional TPE were characterized by various analytical methods such as FTIR, DMA, rotational rheometer, and tensile test. FTIR analysis confirmed that the primary amine groups of cyclic amine compound reacted with maleic anhydride of SEBS-g-MAh to form maleimid groups. Formation of metal-ligand interactions in the modified TPE structure was also shown with various rheological measurements such as strain-dependent, frequency-dependent, and time-dependent test procedures and different mathematical models. It was shown that the strong metal-ligand interactions provided the modified TPE, temperature-induced self-healing property.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.