{"title":"Phenotypic profiling reveals polystyrene nanoplastics elicit sublethal and lethal effects on cellular morphology in rainbow trout gill epithelial cells","authors":"Lissett Guadalupe Diaz, Rebecca Klaper","doi":"10.1039/d4en01149j","DOIUrl":null,"url":null,"abstract":"Extensive knowledge is available on the impacts of both engineered nanomaterials (ENMs) and microplastics, yet there remains a critical gap in understanding the impacts of nanoplastics at the cellular and subcellular effects at sublethal concentrations. This study investigates the impacts of PS NPs on Oncorhynchus mykiss (rainbow trout) gill epithelial cells, emphasizing the crucial role of surface charge in nano-bio interactions. The current study employs both traditional and non-traditional toxicological techniques presenting an image-based study to examine PS NP-cellular interactions at sublethal doses. Our findings demonstrated that relative to the uncharged and negatively charged PS NPs, the positively charged PS NPs significantly decreased cell viability at 4 μg mL<small><sup>-1</sup></small> (EC50: 4.31 μg mL<small><sup>-1</sup></small>). However, at the sublethal concentration of 2 μg mL<small><sup>-1,</sup></small> phenotypic profiling analysis indicates that positively charged PS NPs elicit a significant change to cellular morphology and suggests key interactions with subcellular components. As the impacts measured are novel, further research into the underlying mechanisms will contribute to our understanding of nanoparticle toxicity in vertebrate species guiding both the policy and sustainable design of nanoparticles.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"113 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01149j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive knowledge is available on the impacts of both engineered nanomaterials (ENMs) and microplastics, yet there remains a critical gap in understanding the impacts of nanoplastics at the cellular and subcellular effects at sublethal concentrations. This study investigates the impacts of PS NPs on Oncorhynchus mykiss (rainbow trout) gill epithelial cells, emphasizing the crucial role of surface charge in nano-bio interactions. The current study employs both traditional and non-traditional toxicological techniques presenting an image-based study to examine PS NP-cellular interactions at sublethal doses. Our findings demonstrated that relative to the uncharged and negatively charged PS NPs, the positively charged PS NPs significantly decreased cell viability at 4 μg mL-1 (EC50: 4.31 μg mL-1). However, at the sublethal concentration of 2 μg mL-1, phenotypic profiling analysis indicates that positively charged PS NPs elicit a significant change to cellular morphology and suggests key interactions with subcellular components. As the impacts measured are novel, further research into the underlying mechanisms will contribute to our understanding of nanoparticle toxicity in vertebrate species guiding both the policy and sustainable design of nanoparticles.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis