Deep Neural Networks for Refining Vertical Modeling of Global Tropospheric Delay

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-01-25 DOI:10.1029/2024GL111404
Peng Yuan, Kyriakos Balidakis, Jungang Wang, Pengfei Xia, Jian Wang, Mingyuan Zhang, Weiping Jiang, Harald Schuh, Jens Wickert, Zhiguo Deng
{"title":"Deep Neural Networks for Refining Vertical Modeling of Global Tropospheric Delay","authors":"Peng Yuan,&nbsp;Kyriakos Balidakis,&nbsp;Jungang Wang,&nbsp;Pengfei Xia,&nbsp;Jian Wang,&nbsp;Mingyuan Zhang,&nbsp;Weiping Jiang,&nbsp;Harald Schuh,&nbsp;Jens Wickert,&nbsp;Zhiguo Deng","doi":"10.1029/2024GL111404","DOIUrl":null,"url":null,"abstract":"<p>Kinematic airborne platforms are becoming increasingly vital for Earth observation. They highlight the critical need for accurate tropospheric delay corrections across varying altitudes, especially as most existing models are limited to Earth's surface. Although analytical functions have been used to model vertical reductions in tropospheric delays, they struggle to capture the intricate vertical variations of atmospheric state. In response, we introduce a novel approach that utilizes deep neural networks (DNN) to reconstruct global three-dimensional zenith hydrostatic delay (ZHD) and zenith wet delays (ZWD) derived from numerical weather models (NWM). Our method reconstructs NWM-derived ZHD and ZWD globally up to 14 km above the Earth's surface, with average precision levels of 0.4 and 0.8 mm, respectively. Compared to the analytical third-order exponential model, the DNN approach demonstrates substantial improvement with global average root-mean-square reductions of 63% for ZHD and 36% for ZWD.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111404","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111404","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Kinematic airborne platforms are becoming increasingly vital for Earth observation. They highlight the critical need for accurate tropospheric delay corrections across varying altitudes, especially as most existing models are limited to Earth's surface. Although analytical functions have been used to model vertical reductions in tropospheric delays, they struggle to capture the intricate vertical variations of atmospheric state. In response, we introduce a novel approach that utilizes deep neural networks (DNN) to reconstruct global three-dimensional zenith hydrostatic delay (ZHD) and zenith wet delays (ZWD) derived from numerical weather models (NWM). Our method reconstructs NWM-derived ZHD and ZWD globally up to 14 km above the Earth's surface, with average precision levels of 0.4 and 0.8 mm, respectively. Compared to the analytical third-order exponential model, the DNN approach demonstrates substantial improvement with global average root-mean-square reductions of 63% for ZHD and 36% for ZWD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Mars' Hemispheric Magnetic Field From a Full-Sphere Dynamo A Potential Mushy Source for the Geysers of Enceladus and Other Icy Satellites Transport of Nitric Oxide in the Winter Mesosphere and Lower Thermosphere Understanding the Relationship Between South Pacific Oscillation and ENSO Liquid Fragmentation Induced by Particle Aggregation During Two-Phase Flow in 3D Porous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1