Yanying Wu, Kaikai Zhu, Si Chen, Enzhen Xing, Jiajia Li, Wenqi Tian, Ming Gao, Jiaxin Kong, Danni Zheng, Xue Wang, Weihong Zhou, Shuzhen Men, Xinqi Liu
{"title":"The ASPARAGINE-RICH PROTEIN–LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis","authors":"Yanying Wu, Kaikai Zhu, Si Chen, Enzhen Xing, Jiajia Li, Wenqi Tian, Ming Gao, Jiaxin Kong, Danni Zheng, Xue Wang, Weihong Zhou, Shuzhen Men, Xinqi Liu","doi":"10.1093/plphys/kiaf037","DOIUrl":null,"url":null,"abstract":"The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana). However, the molecular function and mechanism of NRP in cellular vesicle trafficking remain unknown. In this study, we report that NRP directly interacts with LIP5 and ATG8, critical components of the endocytic and autophagic pathways, respectively. Genetic analyses show that NRP overexpression rescues canonical autophagy defects in a LIP5-dependent manner. Cellular and biochemical evidence indicates that NRP-LIP5 recruits ATG8 to multivesicular bodies for further vacuolar degradation, implying that a novel NRP-mediated endocytic pathway is utilized to compensate for the canonical autophagy defects that occur during plant stress responses. These findings provide insights into the crosstalk between the endocytic and autophagic pathways and uncover a function of ATG8 distinct from its canonical role in autophagy. The mechanism revealed here confers an evolutionary advantage to plants and provides a molecular basis for breeding crops with greater stress tolerance.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"49 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf037","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana). However, the molecular function and mechanism of NRP in cellular vesicle trafficking remain unknown. In this study, we report that NRP directly interacts with LIP5 and ATG8, critical components of the endocytic and autophagic pathways, respectively. Genetic analyses show that NRP overexpression rescues canonical autophagy defects in a LIP5-dependent manner. Cellular and biochemical evidence indicates that NRP-LIP5 recruits ATG8 to multivesicular bodies for further vacuolar degradation, implying that a novel NRP-mediated endocytic pathway is utilized to compensate for the canonical autophagy defects that occur during plant stress responses. These findings provide insights into the crosstalk between the endocytic and autophagic pathways and uncover a function of ATG8 distinct from its canonical role in autophagy. The mechanism revealed here confers an evolutionary advantage to plants and provides a molecular basis for breeding crops with greater stress tolerance.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.