Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-24 DOI:10.1002/adhm.202404242
Daniil Nozdriukhin, Shuxin Lyu, Jérôme Bonvin, Michael Reiss, Daniel Razansky, Xosé Luís Deán-Ben
{"title":"Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.","authors":"Daniil Nozdriukhin, Shuxin Lyu, Jérôme Bonvin, Michael Reiss, Daniel Razansky, Xosé Luís Deán-Ben","doi":"10.1002/adhm.202404242","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival. However, deep-tissue monitoring of microscopic structures in vivo is limited by the sensitivity and spatiotemporal resolution of current bioimaging techniques. In this study, biocompatible microrobots are synthesized by incorporating indocyanine green and iron oxide nanoparticles onto copper phosphate microflowers using a layer-by-layer approach, enhancing optoacoustic contrast and enabling magnetic navigation. Magnetic control of these particles under optoacoustic guidance is demonstrated in vivo. Furthermore, super-resolution optoacoustic imaging, achieved through individual particle tracking, is shown to enable the characterization of microvascular structures and quantification of blood flow. The combination of the microflowers' high carrying capacity, in vivo actuation, and high-resolution tracking capabilities opens new opportunities for precise microvascular targeting and localized administration of theranostic agents via intravascular routes.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404242"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival. However, deep-tissue monitoring of microscopic structures in vivo is limited by the sensitivity and spatiotemporal resolution of current bioimaging techniques. In this study, biocompatible microrobots are synthesized by incorporating indocyanine green and iron oxide nanoparticles onto copper phosphate microflowers using a layer-by-layer approach, enhancing optoacoustic contrast and enabling magnetic navigation. Magnetic control of these particles under optoacoustic guidance is demonstrated in vivo. Furthermore, super-resolution optoacoustic imaging, achieved through individual particle tracking, is shown to enable the characterization of microvascular structures and quantification of blood flow. The combination of the microflowers' high carrying capacity, in vivo actuation, and high-resolution tracking capabilities opens new opportunities for precise microvascular targeting and localized administration of theranostic agents via intravascular routes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
3D Mechanical Response Stem Cell Complex Repairs Spinal Cord Injury by Promoting Neurogenesis and Regulating Tissue Homeostasis. Iron Drives Eosinophil Differentiation in Allergic Airway Inflammation Through Mitochondrial Metabolic Adaptation. Ischemic Myocardium Targeting Peptide-Guided Nanobubbles for Multimodal Imaging and Treatment of Coronary Microvascular Dysfunction. Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo. TPMS-Gyroid Scaffold-Mediated Up-Regulation of ITGB1 for Enhanced Cell Adhesion and Immune-Modulatory Osteogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1