{"title":"Simulating Arterial Stress for Rapid Evaluation of Antivascular Calcification Therapies from Herbal Extracts.","authors":"Yu Pan, Yuhang Zhang, Junsheng Lin, Zongtao Liu, Zhou Li, Zhi Luo, Nan Xu","doi":"10.1021/acsbiomaterials.4c01808","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions. To mimic this process, we developed a cyclic stretching device that replicates the physiological mechanical stresses experienced by VSMCs during arterial pulsation. This device dramatically accelerates the osteogenic transition of VSMCs, reducing phenotypic switching from 13 days under static conditions to just 4 h. Using this device, we screened 20 herbal extracts for anticalcification properties and identified<i>Salvia miltiorrhiza</i>as a candidate with therapeutic potential that inhibits VSMC osteogenic transdifferentiation in vitro. The anticalcification efficacy of<i>Salvia miltiorrhiza</i>was further validated in a vitamin D-induced rat model of cardiovascular calcification, highlighting its translational potential. This screening platform provides a rapid and physiologically relevant method for evaluating potential antivascular calcification therapies, significantly improving the efficiency of drug discovery for clinical translation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01808","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions. To mimic this process, we developed a cyclic stretching device that replicates the physiological mechanical stresses experienced by VSMCs during arterial pulsation. This device dramatically accelerates the osteogenic transition of VSMCs, reducing phenotypic switching from 13 days under static conditions to just 4 h. Using this device, we screened 20 herbal extracts for anticalcification properties and identifiedSalvia miltiorrhizaas a candidate with therapeutic potential that inhibits VSMC osteogenic transdifferentiation in vitro. The anticalcification efficacy ofSalvia miltiorrhizawas further validated in a vitamin D-induced rat model of cardiovascular calcification, highlighting its translational potential. This screening platform provides a rapid and physiologically relevant method for evaluating potential antivascular calcification therapies, significantly improving the efficiency of drug discovery for clinical translation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture