Xianglong Wan, Yue Sun, Yiduo Yao, Wan Zuha Wan Hasan, Dong Wen
{"title":"Spatial Cognitive EEG Feature Extraction and Classification Based on MSSECNN and PCMI.","authors":"Xianglong Wan, Yue Sun, Yiduo Yao, Wan Zuha Wan Hasan, Dong Wen","doi":"10.3390/bioengineering12010025","DOIUrl":null,"url":null,"abstract":"<p><p>With the aging population rising, the decline in spatial cognitive ability has become a critical issue affecting the quality of life among the elderly. Electroencephalogram (EEG) signal analysis presents substantial potential in spatial cognitive assessments. However, conventional methods struggle to effectively classify spatial cognitive states, particularly in tasks requiring multi-class discrimination of pre- and post-training cognitive states. This study proposes a novel approach for EEG signal classification, utilizing Permutation Conditional Mutual Information (PCMI) for feature extraction and a Multi-Scale Squeezed Excitation Convolutional Neural Network (MSSECNN) model for classification. Specifically, the MSSECNN classifies spatial cognitive states into two classes-before and after cognitive training-based on EEG features. First, the PCMI extracts nonlinear spatial features, generating spatial feature matrices across different channels. SENet then adaptively weights these features, highlighting key channels. Finally, the MSCNN model captures local and global features using convolution kernels of varying sizes, enhancing classification accuracy and robustness. This study systematically validates the model using cognitive training data from a brain-controlled car and manually operated UAV tasks, with cognitive state assessments performed through spatial cognition games combined with EEG signals. The experimental findings demonstrate that the proposed model significantly outperforms traditional methods, offering superior classification accuracy, robustness, and feature extraction capabilities. The MSSECNN model's advantages in spatial cognitive state classification provide valuable technical support for early identification and intervention in cognitive decline.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the aging population rising, the decline in spatial cognitive ability has become a critical issue affecting the quality of life among the elderly. Electroencephalogram (EEG) signal analysis presents substantial potential in spatial cognitive assessments. However, conventional methods struggle to effectively classify spatial cognitive states, particularly in tasks requiring multi-class discrimination of pre- and post-training cognitive states. This study proposes a novel approach for EEG signal classification, utilizing Permutation Conditional Mutual Information (PCMI) for feature extraction and a Multi-Scale Squeezed Excitation Convolutional Neural Network (MSSECNN) model for classification. Specifically, the MSSECNN classifies spatial cognitive states into two classes-before and after cognitive training-based on EEG features. First, the PCMI extracts nonlinear spatial features, generating spatial feature matrices across different channels. SENet then adaptively weights these features, highlighting key channels. Finally, the MSCNN model captures local and global features using convolution kernels of varying sizes, enhancing classification accuracy and robustness. This study systematically validates the model using cognitive training data from a brain-controlled car and manually operated UAV tasks, with cognitive state assessments performed through spatial cognition games combined with EEG signals. The experimental findings demonstrate that the proposed model significantly outperforms traditional methods, offering superior classification accuracy, robustness, and feature extraction capabilities. The MSSECNN model's advantages in spatial cognitive state classification provide valuable technical support for early identification and intervention in cognitive decline.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering