Mohammad Tabatabai, Derek Wilus, Chau-Kuang Chen, Karan P Singh, Tim L Wallace
{"title":"Taba Binary, Multinomial, and Ordinal Regression Models: New Machine Learning Methods for Classification.","authors":"Mohammad Tabatabai, Derek Wilus, Chau-Kuang Chen, Karan P Singh, Tim L Wallace","doi":"10.3390/bioengineering12010002","DOIUrl":null,"url":null,"abstract":"<p><p>The classification methods of machine learning have been widely used in almost every discipline. A new classification method, called Taba regression, was introduced for analyzing binary, multinomial, and ordinal outcomes. To evaluate the performance of Taba regression, liver cirrhosis data obtained from a Mayo Clinic study were analyzed. The results were then compared with an artificial neural network (ANN), random forest (RF), logistic regression (LR), and probit analysis (PA). The results using cirrhosis data revealed that the Taba regression model could be a competitor to other classification models based on the true positive rate, F-score, accuracy, and area under the receiver operating characteristic curve (AUC). Taba regression can be used by researchers and practitioners as an alternative method of classification in machine learning. In conclusion, the Taba regression provided a reliable result with respect to accuracy, recall, F-score, and AUC when applied to the cirrhosis data.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The classification methods of machine learning have been widely used in almost every discipline. A new classification method, called Taba regression, was introduced for analyzing binary, multinomial, and ordinal outcomes. To evaluate the performance of Taba regression, liver cirrhosis data obtained from a Mayo Clinic study were analyzed. The results were then compared with an artificial neural network (ANN), random forest (RF), logistic regression (LR), and probit analysis (PA). The results using cirrhosis data revealed that the Taba regression model could be a competitor to other classification models based on the true positive rate, F-score, accuracy, and area under the receiver operating characteristic curve (AUC). Taba regression can be used by researchers and practitioners as an alternative method of classification in machine learning. In conclusion, the Taba regression provided a reliable result with respect to accuracy, recall, F-score, and AUC when applied to the cirrhosis data.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering