Bahareh Arab, Murray Moo-Young, Yilan Liu, C Perry Chou
{"title":"Manipulating Intracellular Oxidative Conditions to Enhance Porphyrin Production in <i>Escherichia coli</i>.","authors":"Bahareh Arab, Murray Moo-Young, Yilan Liu, C Perry Chou","doi":"10.3390/bioengineering12010083","DOIUrl":null,"url":null,"abstract":"<p><p>Being essential intermediates for the biosynthesis of heme, chlorophyll, and several other biologically critical compounds, porphyrins have wide practical applications. However, up till now, their bio-based production remains challenging. In this study, we identified potential metabolic factors limiting the biosynthesis of type-III stereoisomeric porphyrins in <i>Escherichia coli</i>. To alleviate this limitation, we developed bioprocessing strategies by redirecting more dissimilated carbon flux toward the HemD-enzymatic pathway to enhance the production of type-III uroporphyrin (UP-III), which is a key precursor for heme biosynthesis. Our approaches included the use of antioxidant reagents and strain engineering. Supplementation with ascorbic acid (up to 1 g/L) increased the UP-III/UP-I ratio from 0.62 to 2.57. On the other hand, overexpression of ROS-scavenging genes such as <i>sod-</i> and <i>kat</i>-genes significantly enhanced UP production in <i>E. coli</i>. Notably, overexpression of <i>sodA</i> alone led to a 72.9% increase in total porphyrin production (1.56 g/L) while improving the UP-III/UP-I ratio to 1.94. Our findings highlight the potential of both antioxidant supplementation and strain engineering to mitigate ROS-induced oxidative stress and redirect more dissimilated carbon flux toward the biosynthesis of type-III porphyrins in <i>E. coli</i>. This work offers an effective platform to enhance the bio-based production of porphyrins.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010083","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Being essential intermediates for the biosynthesis of heme, chlorophyll, and several other biologically critical compounds, porphyrins have wide practical applications. However, up till now, their bio-based production remains challenging. In this study, we identified potential metabolic factors limiting the biosynthesis of type-III stereoisomeric porphyrins in Escherichia coli. To alleviate this limitation, we developed bioprocessing strategies by redirecting more dissimilated carbon flux toward the HemD-enzymatic pathway to enhance the production of type-III uroporphyrin (UP-III), which is a key precursor for heme biosynthesis. Our approaches included the use of antioxidant reagents and strain engineering. Supplementation with ascorbic acid (up to 1 g/L) increased the UP-III/UP-I ratio from 0.62 to 2.57. On the other hand, overexpression of ROS-scavenging genes such as sod- and kat-genes significantly enhanced UP production in E. coli. Notably, overexpression of sodA alone led to a 72.9% increase in total porphyrin production (1.56 g/L) while improving the UP-III/UP-I ratio to 1.94. Our findings highlight the potential of both antioxidant supplementation and strain engineering to mitigate ROS-induced oxidative stress and redirect more dissimilated carbon flux toward the biosynthesis of type-III porphyrins in E. coli. This work offers an effective platform to enhance the bio-based production of porphyrins.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering