Florent Tixier, Felipe Lopez-Ramirez, Alejandra Blanco, Mohammad Yasrab, Ammar A Javed, Linda C Chu, Elliot K Fishman, Satomi Kawamoto
{"title":"Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms?","authors":"Florent Tixier, Felipe Lopez-Ramirez, Alejandra Blanco, Mohammad Yasrab, Ammar A Javed, Linda C Chu, Elliot K Fishman, Satomi Kawamoto","doi":"10.3390/bioengineering12010080","DOIUrl":null,"url":null,"abstract":"<p><p>The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics. 127 patients with histopathologically confirmed PanNENs underwent CT scans with filtered back projection (B20f) and iterative (I26f) reconstruction kernels. 3190 radiomic features were extracted from tumors and pancreatic volumes. Wilcoxon paired tests assessed the impact of reconstruction kernels and ComBat harmonization efficiency. SVM models were employed to predict tumor grade using the entire set of radiomics features or only those identified as harmonizable. The models' performance was assessed on an independent dataset of 36 patients. Significant differences, after correction for multiple testing, were observed in 69% of features in the pancreatic volume and 51% in the tumor volume with B20f and I26f kernels. SVM models demonstrated accuracy ranging from 0.67 (95%CI: 0.50-0.81) to 0.83 (95%CI: 0.69-0.94) in distinguishing grade 1 cases from higher grades. Reconstruction kernels alter radiomics features and iterative kernel models trended towards higher performance. ComBat harmonization mitigates kernel impacts but addressing this effect is crucial in studies involving data from different kernels.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010080","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics. 127 patients with histopathologically confirmed PanNENs underwent CT scans with filtered back projection (B20f) and iterative (I26f) reconstruction kernels. 3190 radiomic features were extracted from tumors and pancreatic volumes. Wilcoxon paired tests assessed the impact of reconstruction kernels and ComBat harmonization efficiency. SVM models were employed to predict tumor grade using the entire set of radiomics features or only those identified as harmonizable. The models' performance was assessed on an independent dataset of 36 patients. Significant differences, after correction for multiple testing, were observed in 69% of features in the pancreatic volume and 51% in the tumor volume with B20f and I26f kernels. SVM models demonstrated accuracy ranging from 0.67 (95%CI: 0.50-0.81) to 0.83 (95%CI: 0.69-0.94) in distinguishing grade 1 cases from higher grades. Reconstruction kernels alter radiomics features and iterative kernel models trended towards higher performance. ComBat harmonization mitigates kernel impacts but addressing this effect is crucial in studies involving data from different kernels.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering