Microdifferential Pressure Measurement Device for Cellular Microenvironments.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-24 DOI:10.3390/bioengineering12010003
Mami Akaike, Jun Hatakeyama, Yoichi Saito, Yoshitaka Nakanishi, Kenji Shimamura, Yuta Nakashima
{"title":"Microdifferential Pressure Measurement Device for Cellular Microenvironments.","authors":"Mami Akaike, Jun Hatakeyama, Yoichi Saito, Yoshitaka Nakanishi, Kenji Shimamura, Yuta Nakashima","doi":"10.3390/bioengineering12010003","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces influence cellular proliferation, differentiation, tissue morphogenesis, and functional expression within the body. To comprehend the impact of these forces on living organisms, their quantification is essential. This study introduces a novel microdifferential pressure measurement device tailored for cellular-scale pressure assessments. The device comprises a glass substrate and a microchannel constructed of polydimethylsiloxane, polytetrafluoroethylene tubes, a glass capillary, and a microsyringe pump. This device obviates the need for electrical measurements, relying solely on the displacement of ultrapure water within the microchannel to assess the micropressure in embryos. First, the device was subjected to arbitrary pressures, and the relationship between the pressure and the displacement of ultrapure water in the microchannel was determined. Calibration results showed that the displacement <i>dx</i> [μm] could be calculated from the pressure <i>P</i> [Pa] using the equation <i>dx</i> = 0.36 <i>P</i>. The coefficient of determination was shown to be 0.87, indicating a linear response. When utilized to measure brain ventricular pressure in mouse embryos, the fabricated device yielded an average pressure reading of 1313 ± 640 Pa. This device can facilitate the measurement of pressure within microcavities in living tissues and other areas requiring precise and localized pressure evaluations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical forces influence cellular proliferation, differentiation, tissue morphogenesis, and functional expression within the body. To comprehend the impact of these forces on living organisms, their quantification is essential. This study introduces a novel microdifferential pressure measurement device tailored for cellular-scale pressure assessments. The device comprises a glass substrate and a microchannel constructed of polydimethylsiloxane, polytetrafluoroethylene tubes, a glass capillary, and a microsyringe pump. This device obviates the need for electrical measurements, relying solely on the displacement of ultrapure water within the microchannel to assess the micropressure in embryos. First, the device was subjected to arbitrary pressures, and the relationship between the pressure and the displacement of ultrapure water in the microchannel was determined. Calibration results showed that the displacement dx [μm] could be calculated from the pressure P [Pa] using the equation dx = 0.36 P. The coefficient of determination was shown to be 0.87, indicating a linear response. When utilized to measure brain ventricular pressure in mouse embryos, the fabricated device yielded an average pressure reading of 1313 ± 640 Pa. This device can facilitate the measurement of pressure within microcavities in living tissues and other areas requiring precise and localized pressure evaluations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
RETRACTED: Saied et al. Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering 2022, 9, 397. 3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1