Lucio Caprioli, Cristian Romagnoli, Francesca Campoli, Saeid Edriss, Elvira Padua, Vincenzo Bonaiuto, Giuseppe Annino
{"title":"Reliability of an Inertial Measurement System Applied to the Technical Assessment of Forehand and Serve in Amateur Tennis Players.","authors":"Lucio Caprioli, Cristian Romagnoli, Francesca Campoli, Saeid Edriss, Elvira Padua, Vincenzo Bonaiuto, Giuseppe Annino","doi":"10.3390/bioengineering12010030","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methods for evaluating tennis technique, such as visual observation and video analysis, are often subjective and time consuming. On the other hand, a quick and accurate assessment can provide immediate feedback to players and contribute to technical development, particularly in less experienced athletes. This study aims to validate the use of a single inertial measurement system to assess some relevant technical parameters of amateur players. Among other things, we attempt to search for significant correlations between the flexion extension and torsion of the torso and the lateral distance of the ball from the body at the instant of impact. This research involved a group of amateur players who performed a series of standardized gestures (forehands and serves) wearing a sensorized chest strap fitted with a wireless inertial unit. The collected data were processed to extract performance metrics. The percentage coefficient of variation for repeated measurements, Wilcoxon signed-rank test, and Spearman's correlation were used to determine the system's reliability. High reliability was found between sets of measurements in all of the investigated parameters. The statistical analysis showed moderate and strong correlations, suggesting possible applications in assessing and optimizing specific aspects of the technique, like the player's distance to the ball in the forehand or the toss in the serve. The significant variations in technical execution among the subjects emphasized the need for tailored interventions through personalized feedback. Furthermore, the system allows for the highlighting of specific areas where intervention can be achieved in order to improve gesture execution. These results prompt us to consider this system's effectiveness in developing an on-court mobile application.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional methods for evaluating tennis technique, such as visual observation and video analysis, are often subjective and time consuming. On the other hand, a quick and accurate assessment can provide immediate feedback to players and contribute to technical development, particularly in less experienced athletes. This study aims to validate the use of a single inertial measurement system to assess some relevant technical parameters of amateur players. Among other things, we attempt to search for significant correlations between the flexion extension and torsion of the torso and the lateral distance of the ball from the body at the instant of impact. This research involved a group of amateur players who performed a series of standardized gestures (forehands and serves) wearing a sensorized chest strap fitted with a wireless inertial unit. The collected data were processed to extract performance metrics. The percentage coefficient of variation for repeated measurements, Wilcoxon signed-rank test, and Spearman's correlation were used to determine the system's reliability. High reliability was found between sets of measurements in all of the investigated parameters. The statistical analysis showed moderate and strong correlations, suggesting possible applications in assessing and optimizing specific aspects of the technique, like the player's distance to the ball in the forehand or the toss in the serve. The significant variations in technical execution among the subjects emphasized the need for tailored interventions through personalized feedback. Furthermore, the system allows for the highlighting of specific areas where intervention can be achieved in order to improve gesture execution. These results prompt us to consider this system's effectiveness in developing an on-court mobile application.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering