Deep Learning for Predicting Spheroid Viability: Novel Convolutional Neural Network Model for Automating Quality Control for Three-Dimensional Bioprinting.
Zyva A Sheikh, Oliver Clarke, Amatullah Mir, Narutoshi Hibino
{"title":"Deep Learning for Predicting Spheroid Viability: Novel Convolutional Neural Network Model for Automating Quality Control for Three-Dimensional Bioprinting.","authors":"Zyva A Sheikh, Oliver Clarke, Amatullah Mir, Narutoshi Hibino","doi":"10.3390/bioengineering12010028","DOIUrl":null,"url":null,"abstract":"<p><p>Spheroids serve as the building blocks for three-dimensional (3D) bioprinted tissue patches. When larger than 500 μm, the desired size for 3D bioprinting, they tend to have a hypoxic core with necrotic cells. Therefore, it is critical to assess the viability of spheroids in order to ensure the successful fabrication of high-viability patches. However, current viability assays are time-consuming, labor-intensive, require specialized training, or are subject to human bias. In this study, we build a convolutional neural network (CNN) model to efficiently and accurately predict spheroid viability, using a phase-contrast image of a spheroid as its input. A comprehensive dataset of mouse mesenchymal stem cell (mMSC) spheroids of varying sizes with corresponding viability percentages, which was obtained through CCK-8 assays, was established and used to train and validate the model. The model was trained to automatically classify spheroids into one of four distinct categories based on their predicted viability: 0-20%, 20-40%, 40-70%, and 70-100%. The model achieved an average accuracy of 92%, with a consistent loss below 0.2. This deep-learning model offers a non-invasive, efficient, and accurate method to streamline the assessment of spheroid quality, thereby accelerating the development of bioengineered cardiac tissue patches for cardiovascular disease therapies.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spheroids serve as the building blocks for three-dimensional (3D) bioprinted tissue patches. When larger than 500 μm, the desired size for 3D bioprinting, they tend to have a hypoxic core with necrotic cells. Therefore, it is critical to assess the viability of spheroids in order to ensure the successful fabrication of high-viability patches. However, current viability assays are time-consuming, labor-intensive, require specialized training, or are subject to human bias. In this study, we build a convolutional neural network (CNN) model to efficiently and accurately predict spheroid viability, using a phase-contrast image of a spheroid as its input. A comprehensive dataset of mouse mesenchymal stem cell (mMSC) spheroids of varying sizes with corresponding viability percentages, which was obtained through CCK-8 assays, was established and used to train and validate the model. The model was trained to automatically classify spheroids into one of four distinct categories based on their predicted viability: 0-20%, 20-40%, 40-70%, and 70-100%. The model achieved an average accuracy of 92%, with a consistent loss below 0.2. This deep-learning model offers a non-invasive, efficient, and accurate method to streamline the assessment of spheroid quality, thereby accelerating the development of bioengineered cardiac tissue patches for cardiovascular disease therapies.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering