{"title":"Machine Learning Models for Predicting Thermal Properties of Radiative Cooling Aerogels.","authors":"Chengce Yuan, Yimin Shi, Zhichen Ba, Daxin Liang, Jing Wang, Xiaorui Liu, Yabei Xu, Junreng Liu, Hongbo Xu","doi":"10.3390/gels11010070","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating global climate crisis and energy challenges have made the development of efficient radiative cooling materials increasingly urgent. This study presents a machine-learning-based model for predicting the performance of radiative cooling aerogels (RCAs). The model integrated multiple parameters, including the material composition (matrix material type and proportions), modification design (modifier type and content), optical properties (solar reflectance and infrared emissivity), and environmental factors (solar irradiance and ambient temperature) to achieve accurate cooling performance predictions. A comparative analysis of various machine learning algorithms revealed that an optimized XGBoost model demonstrated superior predictive performance, achieving an R<sup>2</sup> value of 0.943 and an RMSE of 1.423 for the test dataset. An interpretability analysis using Shapley additive explanations (SHAPs) identified a ZnO modifier (SHAP value, 1.523) and environmental parameters (ambient temperature, 1.299; solar irradiance, 0.979) as the most significant determinants of cooling performance. A feature interaction analysis further elucidated the complex interplay between the material composition and environmental conditions, providing theoretical guidance for material optimization.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010070","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating global climate crisis and energy challenges have made the development of efficient radiative cooling materials increasingly urgent. This study presents a machine-learning-based model for predicting the performance of radiative cooling aerogels (RCAs). The model integrated multiple parameters, including the material composition (matrix material type and proportions), modification design (modifier type and content), optical properties (solar reflectance and infrared emissivity), and environmental factors (solar irradiance and ambient temperature) to achieve accurate cooling performance predictions. A comparative analysis of various machine learning algorithms revealed that an optimized XGBoost model demonstrated superior predictive performance, achieving an R2 value of 0.943 and an RMSE of 1.423 for the test dataset. An interpretability analysis using Shapley additive explanations (SHAPs) identified a ZnO modifier (SHAP value, 1.523) and environmental parameters (ambient temperature, 1.299; solar irradiance, 0.979) as the most significant determinants of cooling performance. A feature interaction analysis further elucidated the complex interplay between the material composition and environmental conditions, providing theoretical guidance for material optimization.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.