Sushma Yadav, Claudia M Kowolik, Daniel Schmolze, Yuan Yuan, Min Lin, Arthur D Riggs, David A Horne
{"title":"Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer.","authors":"Sushma Yadav, Claudia M Kowolik, Daniel Schmolze, Yuan Yuan, Min Lin, Arthur D Riggs, David A Horne","doi":"10.3390/cells14020128","DOIUrl":null,"url":null,"abstract":"<p><p>Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal role in epithelial-mesenchymal transition (EMT), metastasis, and chemo- and radio-resistance in cancer cells. In hepatocellular carcinoma, aberrant phosphorylation of SMC1A has been associated with enhanced cell proliferation and migration. Despite these insights, the precise role of SMC1A phosphorylation in breast cancer remains largely unexplored. This study represents the first investigation to test the phosphorylation status and subcellular localization of SMC1A (p-SMC1A) in breast cancer and normal breast tissues. Immunohistochemical (IHC) staining was conducted using previously validated phospho-SMC1A antibodies on a histological section and tissue microarray (TMA) comprising samples from primary, invasive, and metastatic breast cancer and normal breast tissues. Our results revealed that p-SMC1A staining intensity was lower in normal breast tissues compared to invasive or metastatic breast cancer tissues (<i>p</i> < 0.001). Approximately 40% of breast cancer tissue exhibited cytoplasmic/membranous localization of p-SMC1A, whereas nuclear expression was observed in normal breast tissues. Moreover, elevated phosphorylation levels were significantly associated with higher tumor grade and metastasis.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14020128","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal role in epithelial-mesenchymal transition (EMT), metastasis, and chemo- and radio-resistance in cancer cells. In hepatocellular carcinoma, aberrant phosphorylation of SMC1A has been associated with enhanced cell proliferation and migration. Despite these insights, the precise role of SMC1A phosphorylation in breast cancer remains largely unexplored. This study represents the first investigation to test the phosphorylation status and subcellular localization of SMC1A (p-SMC1A) in breast cancer and normal breast tissues. Immunohistochemical (IHC) staining was conducted using previously validated phospho-SMC1A antibodies on a histological section and tissue microarray (TMA) comprising samples from primary, invasive, and metastatic breast cancer and normal breast tissues. Our results revealed that p-SMC1A staining intensity was lower in normal breast tissues compared to invasive or metastatic breast cancer tissues (p < 0.001). Approximately 40% of breast cancer tissue exhibited cytoplasmic/membranous localization of p-SMC1A, whereas nuclear expression was observed in normal breast tissues. Moreover, elevated phosphorylation levels were significantly associated with higher tumor grade and metastasis.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.