Relationship Between the 2019 Ridgecrest, California, MW7.1 Earthquake and Its MW6.4 Foreshock Sequence.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-28 DOI:10.3390/e27010016
Jianchang Zheng, Zhengshuai Zhang, Xiaohan Li
{"title":"Relationship Between the 2019 Ridgecrest, California, <i>M</i><sub>W</sub>7.1 Earthquake and Its <i>M</i><sub>W</sub>6.4 Foreshock Sequence.","authors":"Jianchang Zheng, Zhengshuai Zhang, Xiaohan Li","doi":"10.3390/e27010016","DOIUrl":null,"url":null,"abstract":"<p><p>The 2019 Ridgecrest <i>M</i><sub>W</sub>7.1 earthquake has received significant attention due to its complex fault activity. It is also noticeable for its <i>M</i><sub>W</sub>6.4 foreshock sequence. There are intricate dynamic relationships between earthquakes in such vigorous sequences. Based on the relocated catalogue, we adopt the nearest neighbour algorithm to analyze its foreshock and aftershock sequences. Detailed links and family structures of the sequence are obtained. The results show that a <i>M</i><sub>W</sub>5.0 event at 03:16 (UTC) on 6 July is a direct foreshock of the <i>M</i><sub>W</sub>7.1 mainshock. It is likely related to barriers on the northwest-striking fault. The <i>M</i><sub>W</sub>6.4 event on 4 July is characterized as a complex conjugate rupture. Notably, a magnitude 4.0 event occurred on the northwest-striking fault before the <i>M</i><sub>W</sub>6.4 event, establishing it as a direct foreshock. The Ridgecrest sequence is predominantly influenced by northwest fault activity. It first caused small fractures on the northwest-striking fault. Then, it triggered conjugate slips on the southwest-striking fault. Lastly, it led to larger ruptures on the northwest-striking fault.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010016","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The 2019 Ridgecrest MW7.1 earthquake has received significant attention due to its complex fault activity. It is also noticeable for its MW6.4 foreshock sequence. There are intricate dynamic relationships between earthquakes in such vigorous sequences. Based on the relocated catalogue, we adopt the nearest neighbour algorithm to analyze its foreshock and aftershock sequences. Detailed links and family structures of the sequence are obtained. The results show that a MW5.0 event at 03:16 (UTC) on 6 July is a direct foreshock of the MW7.1 mainshock. It is likely related to barriers on the northwest-striking fault. The MW6.4 event on 4 July is characterized as a complex conjugate rupture. Notably, a magnitude 4.0 event occurred on the northwest-striking fault before the MW6.4 event, establishing it as a direct foreshock. The Ridgecrest sequence is predominantly influenced by northwest fault activity. It first caused small fractures on the northwest-striking fault. Then, it triggered conjugate slips on the southwest-striking fault. Lastly, it led to larger ruptures on the northwest-striking fault.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1