Thompson Sampling for Non-Stationary Bandit Problems.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2025-01-09 DOI:10.3390/e27010051
Han Qi, Fei Guo, Li Zhu
{"title":"Thompson Sampling for Non-Stationary Bandit Problems.","authors":"Han Qi, Fei Guo, Li Zhu","doi":"10.3390/e27010051","DOIUrl":null,"url":null,"abstract":"<p><p>Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive attention. We focus on the abruptly changing scenario where reward distributions remain constant for a certain period and change at unknown time steps. Although Thompson sampling (TS) has shown success in non-stationary settings, there is currently no regret bound analysis for TS with uninformative priors. To address this, we propose two algorithms, discounted TS and sliding-window TS, designed for sub-Gaussian reward distributions. For these algorithms, we establish an upper bound for the expected regret by bounding the expected number of times a suboptimal arm is played. We show that the regret upper bounds of both algorithms are O~(TBT), where <i>T</i> is the time horizon and BT is the number of breakpoints. This upper bound matches the lower bound for abruptly changing problems up to a logarithmic factor. Empirical comparisons with other non-stationary bandit algorithms highlight the competitive performance of our proposed methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010051","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive attention. We focus on the abruptly changing scenario where reward distributions remain constant for a certain period and change at unknown time steps. Although Thompson sampling (TS) has shown success in non-stationary settings, there is currently no regret bound analysis for TS with uninformative priors. To address this, we propose two algorithms, discounted TS and sliding-window TS, designed for sub-Gaussian reward distributions. For these algorithms, we establish an upper bound for the expected regret by bounding the expected number of times a suboptimal arm is played. We show that the regret upper bounds of both algorithms are O~(TBT), where T is the time horizon and BT is the number of breakpoints. This upper bound matches the lower bound for abruptly changing problems up to a logarithmic factor. Empirical comparisons with other non-stationary bandit algorithms highlight the competitive performance of our proposed methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1