Traumatic Brain Injury Promotes Neurogenesis and Oligodendrogenesis in Subcortical Brain Regions of Mice.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2025-01-10 DOI:10.3390/cells14020092
Olga Astakhova, Anna Ivanova, Ilia Komoltsev, Natalia Gulyaeva, Grigori Enikolopov, Alexander Lazutkin
{"title":"Traumatic Brain Injury Promotes Neurogenesis and Oligodendrogenesis in Subcortical Brain Regions of Mice.","authors":"Olga Astakhova, Anna Ivanova, Ilia Komoltsev, Natalia Gulyaeva, Grigori Enikolopov, Alexander Lazutkin","doi":"10.3390/cells14020092","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention. Here, we investigated cell division and differentiation in non-neurogenic brain regions during the acute and delayed phases of TBI-induced neurodegeneration. We subjected mice to lateral fluid percussion injury (LFPI) to model TBI and analyzed them 1 or 7 weeks later. To assess cellular proliferation and differentiation, we administered 5-ethinyl-2'-deoxyuridine (EdU) and determined the number and identity of dividing cells 2 h later using markers of neuronal precursors and astro-, micro-, and oligodendroglia. Our results demonstrated a significant proliferative response in several brain regions at one week post-injury that notably diminished by seven weeks, except in the optic tract. In addition to active astro- and microgliosis, we detected oligodendrogenesis in the striatum and optic tract. Furthermore, we observed trauma-induced neurogenesis in the striatum. These findings suggest that subcortical structures, particularly the striatum and optic tract, may possess a potential for self-repair through neuronal regeneration and axon remyelination.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14020092","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention. Here, we investigated cell division and differentiation in non-neurogenic brain regions during the acute and delayed phases of TBI-induced neurodegeneration. We subjected mice to lateral fluid percussion injury (LFPI) to model TBI and analyzed them 1 or 7 weeks later. To assess cellular proliferation and differentiation, we administered 5-ethinyl-2'-deoxyuridine (EdU) and determined the number and identity of dividing cells 2 h later using markers of neuronal precursors and astro-, micro-, and oligodendroglia. Our results demonstrated a significant proliferative response in several brain regions at one week post-injury that notably diminished by seven weeks, except in the optic tract. In addition to active astro- and microgliosis, we detected oligodendrogenesis in the striatum and optic tract. Furthermore, we observed trauma-induced neurogenesis in the striatum. These findings suggest that subcortical structures, particularly the striatum and optic tract, may possess a potential for self-repair through neuronal regeneration and axon remyelination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Correction: Richards et al. Indian Ornamental Tarantula (Poecilotheria regalis) Venom Affects Myoblast Function and Causes Skeletal Muscle Damage. Cells 2023, 12, 2074. Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ). Detection of Cancer Stem Cells from Patient Samples. Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1