Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Issues in Molecular Biology Pub Date : 2025-01-03 DOI:10.3390/cimb47010025
Yuxuan Jin, Shuting Zhou, Zhihui Du, Weize Wang, Zhilin Chen
{"title":"Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of <i>Dendrobium chrysotoxum</i>.","authors":"Yuxuan Jin, Shuting Zhou, Zhihui Du, Weize Wang, Zhilin Chen","doi":"10.3390/cimb47010025","DOIUrl":null,"url":null,"abstract":"<p><p>Terpenes are critical components of the floral fragrance component in <i>Dendrobium chrysotoxum</i>, synthesized by terpene synthase (TPS). Analysis of the <i>D. chrysotoxum</i> genome and transcriptional data revealed that the gene <i>DcTPSb1</i> was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of <i>Dendrobium chrysotoxum</i>. Consequently, the <i>DcTPSb1</i> gene was selected for further analysis. <i>DcTPSb1</i> exhibited elevated expression levels in flowers among four organs (roots, stems, leaves, flowers) of <i>D. chrysotoxum</i>, with the highest expression observed during the blooming phase, which aligned with the accumulation of volatile terpenes during flowering. DcTPSb1, located in the chloroplasts, was identified as a member of the TPS-b subfamily associated with monoterpenes synthesis, showing close phylogenetic relationships with homologous proteins in related plant species. An analysis of the promoter region of <i>DcTPSb1</i> indicated that it may be regulated by methyl jasmonate (MeJA) responsiveness. Functionally, DcTPSb1 was shown to catalyze the conversion of geranyl diphosphate (GPP) to linalool, ocimene, and (-)-α-pinitol in vitro. Overexpression of <i>DcTPSb1</i> in tobacco resulted in a significant increase in terpenoid release during the blooming stage; however, the up-regulated substances did not include their catalytic products. The classification of DcTPSb1 as a terpene synthase capable of producing multiple products provides valuable insights into the complex biosynthesis of terpenes in orchids. These findings enhance our understanding of the functional diversity of <i>DcTPSb1</i> and the processes involved in terpene biosynthesis in orchids.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47010025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Terpenes are critical components of the floral fragrance component in Dendrobium chrysotoxum, synthesized by terpene synthase (TPS). Analysis of the D. chrysotoxum genome and transcriptional data revealed that the gene DcTPSb1 was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of Dendrobium chrysotoxum. Consequently, the DcTPSb1 gene was selected for further analysis. DcTPSb1 exhibited elevated expression levels in flowers among four organs (roots, stems, leaves, flowers) of D. chrysotoxum, with the highest expression observed during the blooming phase, which aligned with the accumulation of volatile terpenes during flowering. DcTPSb1, located in the chloroplasts, was identified as a member of the TPS-b subfamily associated with monoterpenes synthesis, showing close phylogenetic relationships with homologous proteins in related plant species. An analysis of the promoter region of DcTPSb1 indicated that it may be regulated by methyl jasmonate (MeJA) responsiveness. Functionally, DcTPSb1 was shown to catalyze the conversion of geranyl diphosphate (GPP) to linalool, ocimene, and (-)-α-pinitol in vitro. Overexpression of DcTPSb1 in tobacco resulted in a significant increase in terpenoid release during the blooming stage; however, the up-regulated substances did not include their catalytic products. The classification of DcTPSb1 as a terpene synthase capable of producing multiple products provides valuable insights into the complex biosynthesis of terpenes in orchids. These findings enhance our understanding of the functional diversity of DcTPSb1 and the processes involved in terpene biosynthesis in orchids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
期刊最新文献
Screening of Anti-Hair Loss Plant Raw Materials Based on Reverse Network Pharmacology and Experimental Validation. Targeting SLC4A4: A Novel Approach in Colorectal Cancer Drug Repurposing. A Case of Non-Small Cell Lung Cancer with Mutually Exclusive EGFR and KRAS Mutations. Impact of Thrombopoietin Receptor Agonists on Pathophysiology of Pediatric Immune Thrombocytopenia. The First Complete Chloroplast Genome Sequence of Secale strictum subsp. africanum Stapf (Poaceae), the Putative Ancestor of the Genus Secale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1